Flexture based alignment mechanisms

Micro system technology MEMS/NEMS Precision-technology
SPIE by N.van der Lee, P. Kappelhof, R. Hamelinck 27 April 2006

For high accuracy alignment of optical components in optical instruments TNO TPD has developed dedicated, monolithic, flexure-based alignment mechanisms, which provide accuracies below 0.1 ?m and 0.1 ?rad as well as stabilities down to picometers per minute. High resolution, high stability alignment mechanisms consist of an adjustment mechanism and a locking device. Complex monolithic flexure-based mechanisms are designed to align specific degrees of freedom. They are realized by means of spark erosion. The benefits of these mechanisms are no play, no hysteresis, high stiffness, a simplified thermal design and easy assemblation. The overall system can remain a passive system, which yields simplicity. An actuator is used for positioning. Locking after alignment is mandatory to guarantee sub-nanometer stability per minute. A proper design of the locking device is important to minimize drift during locking. The dedicated alignment mechanisms presented here are based on: (a) the results of an internal ongoing research program on alignment and locking and (b) experience with mechanisms developed at TNO TPD for high precision optical instruments, which are used in e.g. a white light interferometer breadboard (Nulling) and an interferometer with picometer resolution for ESA’s future cornerstone missions “DARWIN” and “GAIA”.


References

Order of frictions and stiffnesses…

For lumped systems consisting of different frictions and stiffnesses, there has been confusion in literature about hysteresis curves and virtual play for many decades.

Read more
Make it clean

In mid-April, the second edition of the Manufacturing Technology Conference and the fifth edition of the Clean Event were held together, for the first time, at the Koningshof in Veldhoven (NL).

Read more
Bringing particles to light

Particle contamination monitoring and cleanliness control are fundamental to micromanufacturing processes across diverse industries to achieve cost-effective production of high-quality and reliable microscale devices and components.

Read more