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Introduction
High-tech positioning systems aim to position a system very 
accurately. This often goes hand in hand with high velocities 
and accelerations. High controller bandwidths and mutual 
decoupling of the various degrees of freedom (DoFs) are 
desirable for obtaining the best system performance. 

Typically, one actuator is needed per actively controlled DoF. 
Volume conflicts, design choices (such as symmetry for centre-
of-gravity positioning) or actuator force limitations often lead 
to an over-actuated system. In these systems there are more 
actuators than actively controlled DoFs (and sometimes 
even more actuators than observable DoFs); see Figure 1. 

In motion control, the goal is usually to control the rigid-
body movements, i.e. the actively controlled DoFs. This is 
done by decoupling the MIMO (multiple input, multiple 
output) system into logical directions through combining 
physical actuator forces in such a way that a resultant force 
is applied in only one specific logical direction. 

High-tech positioning systems require high controller bandwidths and the decoupling of 
the various degrees of freedom (DoFs) to obtain the best system performance. Typically, one 
actuator is needed per actively controlled DoF, but practical design considerations often 
lead to an over-actuated system. It is shown here, however, that the freedom provided 
by over-actuation can be used to not only decouple rigid-body modes, but also to isolate 
non-rigid-body resonance modes. Thus the performance and/or robustness of the 
controlled system is improved without actually having to add an additional control loop.

As an example, consider a symmetrical beam with two 
DoFs, a translation and a rotation, and actuators on the left 
and right ends of the beam; see Figure 2. Typically, the sum 
of the actuators drives a translation and their difference the 
rotation, i.e., for translation, the two forces have the same 
direction and, for rotation, the opposite direction. This 
mapping can be captured in a distribution matrix, which 
is referred to as actuator matrix. This decoupling matrix 
is often based on geometry, mass and inertia properties 
of the system and decouples to the principal axes of inertia. 

In a similar way, the sensor matrix converts sensor readings 
to logical coordinates. The mathematically obtained de coupled 
system is referred to as compensated mechanics (see Figure 
3). The term ‘compensated’ is used to distinguish between 
‘raw’, i.e. physical, inputs/outputs and a system with AM and 
SM that works in logical (control-oriented) inputs/outputs:

 

 
[* Equation 1 *] 
 

𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑷𝑷𝐫𝐫𝐫𝐫𝐫𝐫 ∙ 𝑨𝑨𝑺𝑺 
 
 
[* Equation 2 *] 
 
 

𝑺𝑺inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low
2  

 
 
[* Equation 3 *] 
 

𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑺𝑺 = 𝑺𝑺−1  
 
 
[* Equation 4 *] 
 

𝑨𝑨𝑺𝑺 = 𝑺𝑺inv−meas
−1 ∙ 𝑺𝑺−1 

 
 
[* Equation 5 *] 
 

𝑺𝑺𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  [
𝑚𝑚1 0 0
0 𝐽𝐽1 0
0 0 𝑚𝑚2

] 

 
 

[* Equation 6 *] 
 

𝑲𝑲𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [
1 𝑟𝑟21 −1

𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21
−1 −𝑟𝑟21 1

] 

 
 
 [* Equation 7 *] 
 

𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇 
 
 
[* Equation 8 *] 
 

𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈
𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑺𝑺 

 
 
[* Equation 9 *] 
 

𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 

 
 
 
 
 

 

Here, PCM is the compensated mechanics plant, SM is the 
sensor matrix, Praw is the ‘raw’ plant, and AM is the actuator 
matrix. Thus, using an actuator matrix and a sensor matrix 

If a system contains more actuators than controlled DoFs, it is called 
an over-actuated system. (Source: [1])

1

Example of a symmetrical beam with forces F1 and F2 on the left 
and right ends, respectively.
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together with the ‘raw’ plant, the compensated mechanics 
are obtained. This transfer function describes the system in 
logical/functional DoFs. If the DoFs are along inertial axes 
this can also result in decoupled system behaviour, which 
then turns the control problem into a series of (decoupled) 
SISO (single input, single output) control tuning problems. 
Typically, this is the preferred route for the control design 
of high-performance mechatronic motion systems. 

The actuator matrix maps the input signals to the physical 
actuators in such a way that only one functional input 
direction is actuated. All other specified directions should 
not be affected. Consider the beam shown in Figure 2; 
when this system is decoupled correctly, rotations can 
be made without making a translation and vice versa. 

A practical method to derive the actuator matrix AM (for 
rigid-body-mode decoupling) is to use a measured transfer 
function from physical actuator inputs to logical outputs 
TFraw(ω) = SM ∙ Praw(ω) and define a frequency point at 
which the transfer function is mass-dominated (typically 
a low-frequency point), ωmass, in a high-coherence (> 0.9) 
area, then: 

 

 
 
 
[* Equation 2 *] 
 
 

𝑴𝑴inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔mass) ∙ 𝜔𝜔mass
2  

 
 
 
 
[* Equation 10 *] 
 

𝑨𝑨𝑴𝑴 = (𝑺𝑺𝑴𝑴 ∙ 𝑽𝑽o ∙ 𝚲𝚲 ∙ 𝑽𝑽IT ∙ 𝑯𝑯)
−1𝑴𝑴model

−1  
 
 
 
 
 

 

Assume now an ideal transfer function (inverted mass 
matrix) in the functional direction, i.e. along inertial axes, 
M–1 (this matrix need not be exact, but it is always square 
and usually diagonal). To obtain the actuator matrix, the 
following equation can then be used: 

 

 
[* Equation 1 *] 
 

𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑷𝑷𝐫𝐫𝐫𝐫𝐫𝐫 ∙ 𝑨𝑨𝑺𝑺 
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2  

 
 
[* Equation 3 *] 
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[* Equation 4 *] 
 

𝑨𝑨𝑺𝑺 = 𝑺𝑺inv−meas
−1 ∙ 𝑺𝑺−1 

 
 
[* Equation 5 *] 
 

𝑺𝑺𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  [
𝑚𝑚1 0 0
0 𝐽𝐽1 0
0 0 𝑚𝑚2
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[* Equation 6 *] 
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] 

 
 
 [* Equation 7 *] 
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[* Equation 8 *] 
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[* Equation 9 *] 
 

𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 

 
 
 
 
 

 (1)

From which follows:
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If a system contains as many actuators as controlled DoFs, 
the measured mass matrix Minv–meas will, if all motions 
can be achieved, be a square, full-rank matrix. As a result, 
the actuator matrix AM will also be square and unique. 

With an over-actuated system, there are more logical inputs 
(transfer function columns) than system outputs (rows). In 
such cases, the measured matrix TFraw(ωmass) is not square 
and there is not one unique AM that can solve Equation 1. 
Here, the matrix inversion is often done using what is 
known as a pseudo-inverse. The pseudo-inverse calculates 
an optimal (minimum-energy) result, which is a solution 
AM = Minv–meas

–1 ∙ Minv , but not the only one! The solution 
space of all possible solutions to this equation can be 
calculated. In linear algebra, this is related to the null-space 
of Minv–meas

–1, which is then not empty.

Physically, this means that there are multiple actuator 
distribution combinations possible for obtaining the 
desired effect of diagonalisation, i.e. decoupling. In the case 
of the beam mentioned earlier (Figure 2), if there were 
a third actuator, then the system would be over-actuated. 
There would be multiple combinations possible for 
the distribution of the forces over the actuators such 
that only a rotation or a translation is obtained. 

This article provides an opportunity to use this design space 
to not only decouple rigid-body modes, but also to isolate 
non-rigid-body resonance modes. It is shown here that the 
freedom provided by over-actuation can be used to improve 
the performance and/or robustness of the controlled system, 
without actually having to add an additional control loop. 
As an example, by isolating non-rigid body modes, 
a bandwidth-limiting resonance can become ‘invisible’ 
for the rigid-body input. It could also be that tracking 
performance and settling improve, as the disturbing non-
rigid-body modes are either not or less excited.

To do this analysis, a simple and practical example is used, 
which will be presented first. Then the theory of this 
method is discussed and how it can be applied to the simple 
example. Following the theoretical approach, the practical 
approach will be applied to the example. After presenting 
the simple example, the results for an existing, more 
complex system will be discussed. Finally, this article 
will draw some conclusions. 

The compensated mechanics give a logical-to-logical transfer function. 
Note that the number of sensors/actuators does not have to be equal 
to the number of controlled DoFs.

3

Schematic overview of a simple example consisting of two bodies 
and three actuators.

4
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Simple example
The simple example used in this article is that of a two-
mass-spring-damper system as shown in Figure 4. The goal 
is to control the two rigid-body states [qtrans qrot]. The system 
has three actuators, two of which are positioned on the 
lower body with mass m1 and inertia J1, and one of which 
is on the upper body with mass m2. For simplicity, it is 
assumed that the spring with stiffness k is only a trans-
lational spring and that the upper body has no rotational 
inertia. In this example, we can see directly that this 
is an over-actuated system and that there are different 
distributions possible that will achieve the goal 
of controlling the two rigid-body modes. 

We will now show that the design space spanned by the 
over-dimensioning can be used to get a beneficial decoupling. 

Theoretical approach 
In the theoretical approach, we assume that the spring 
stiffness and all masses and positions with respect to the 
centre of gravity are known. The system can be described 
with three DoFs (two translations and one rotation). From 
this, the mass matrix Mmodel and stiffness matrix Kmodel 
can be derived: 

 
 

 
[* Equation 1 *] 
 

𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑷𝑷𝐫𝐫𝐫𝐫𝐫𝐫 ∙ 𝑨𝑨𝑺𝑺 
 
 
[* Equation 2 *] 
 
 

𝑺𝑺inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low
2  
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𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑺𝑺 = 𝑺𝑺−1  
 
 
[* Equation 4 *] 
 

𝑨𝑨𝑺𝑺 = 𝑺𝑺inv−meas
−1 ∙ 𝑺𝑺−1 

 
 
[* Equation 5 *] 
 

𝑺𝑺𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  [
𝑚𝑚1 0 0
0 𝐽𝐽1 0
0 0 𝑚𝑚2

] 

 
 

[* Equation 6 *] 
 

𝑲𝑲𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [
1 𝑟𝑟21 −1

𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21
−1 −𝑟𝑟21 1

] 

 
 
 [* Equation 7 *] 
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𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑺𝑺 

 
 
[* Equation 9 *] 
 

𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 
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Here, the coordinate vector is:
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𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈
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𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 

 
 
 
 
 

 

In order to isolate the three distinct eigenmodes, we 
transform the system into a modal representation with 
modal coordinates. From the K- and M-matrices it is 
possible to obtain the eigenfrequencies Λ and eigenvectors V 
(Matlab: eig(K,M)). Furthermore, it is possible to calculate 
the input transformation matrix H. This matrix describes 
how each actuator force input acts on each eigenmode. 

Writing the compensated mechanics in terms of eigen-
vectors and the input transformation matrix gives:

 

 
[* Equation 1 *] 
 

𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑺𝑺 ∙ 𝑷𝑷𝐫𝐫𝐫𝐫𝐫𝐫 ∙ 𝑨𝑨𝑺𝑺 
 
 
[* Equation 2 *] 
 
 

𝑺𝑺inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low
2  

 
 
[* Equation 3 *] 
 

𝑺𝑺𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑺𝑺 = 𝑺𝑺−1  
 
 
[* Equation 4 *] 
 

𝑨𝑨𝑺𝑺 = 𝑺𝑺inv−meas
−1 ∙ 𝑺𝑺−1 

 
 
[* Equation 5 *] 
 

𝑺𝑺𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  [
𝑚𝑚1 0 0
0 𝐽𝐽1 0
0 0 𝑚𝑚2

] 

 
 

[* Equation 6 *] 
 

𝑲𝑲𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [
1 𝑟𝑟21 −1

𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21
−1 −𝑟𝑟21 1

] 

 
 
 [* Equation 7 *] 
 

𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇 
 
 
[* Equation 8 *] 
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𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑺𝑺 

 
 
[* Equation 9 *] 
 

𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 

 
 
 
 
 

 

Here, Vo is the eigenvector matrix for the output nodes 
(sensors), Λ is the diagonal eigenfrequency matrix, and VI

T 
is the transposed eigenvector matrix for the input nodes 
(actuators). These follow from an eigenvalue, eigenvector 
or modal decomposition of the system. For the example 
discussed in this article, the two matrices are identical. The 

entries of matrices Vo and VI can be interpreted as the modal 
contributions for each mode at the physical actuator and 
sensor node locations. In this equation, the actuator matrix 
AM and sensor matrix SM are again present. The desired 
logical outputs are the first two coordinates of q, hence SM 
simply selects the first two outputs:
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𝑺𝑺𝑺𝑺 = [1 0 0
0 1 0] 

 
 
 
 
 

 

The raw mechanics (containing a matrix of transfers from 
each actuator input to each sensor output) are now written 
as a set (sum) of system modes with dynamics described in 
the square, diagonal 3 x 3 transfer function Λ; in this case, 
two rigid-body modes and one resonance T. The eigen-
vectors are the columns of Vo, which also constitute  
a 3 x 3 invertible matrix, and they define the mode shapes in 
terms of the coordinates 
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, while H maps the physical input 
forces (F11, F12 and F21) to these coordinates. 

We chose a modal system description here because it will 
help in handling the design freedom when determining AM 
later on. 

Now take two cases: 
A)   the classical decoupling considering only rigid-body 

information using the pseudo-inverse;
B)   the decoupling with non-rigid-body information included.

According to our ‘recipe’ for the calculation of AM:

 

 
 
 
[* Equation 2 *] 
 
 

𝑴𝑴inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔mass) ∙ 𝜔𝜔mass
2  

 
 
 
 
[* Equation 10 *] 
 

𝑨𝑨𝑴𝑴 = (𝑺𝑺𝑴𝑴 ∙ 𝑽𝑽o ∙ 𝚲𝚲 ∙ 𝑽𝑽IT ∙ 𝑯𝑯)
−1𝑴𝑴model

−1  
 
 
 
 
 

 

The result is a decoupled system in which two rigid-body 
modes can be controlled independently of each other (case 
a). Since (SM ∙ Vo ∙ Λ ∙ VI

T ∙ H) is non-square (e.g. three 
inputs, two outputs), the pseudo-inverse is used. As will be 
shown later, this solution eliminates the interaction between 
qtrans and qrot, but resonant behaviour remains in the separate 
transfer functions.

Alternatively, AM can de designed to decouple all of the 
system modes, i.e. using the full modal description of the 
system. Since there are three modes and three inputs, 
this can be done by simply removing SM ∙ Vo and using 
the full modal model for inversion. As (Λ ∙ VI

T ∙ H) 
is square (and full rank), it is invertible (case b). As well as 
decoupling the rigid-body modes from each other, it 
also decouples from the non-rigid-body modes that are 
included. In the final system, we simply neglect the third 
output, which means that when actuating the rigid body, 
the non-rigid-body mode is not actuated. 

This method can also be applied to the simple example. 
When making an open-loop transfer of these compensated 
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mechanics, it can be seen that the eigenmode does not show 
up in the measured transfer. 

Figure 5 shows that when including the non-rigid-body 
mode, the decoupling ensures that the rigid-body input is 
not actuating the non-rigid-body mode. In other words, 
applying this method takes into account that the system is 
not actually a rigid body and that the actuators are in fact 
not on the same body. Based on that, a distribution of forces 
is made that results in a similar movement for all bodies. 
Additionally, in the off-diagonals we see a better decoupling 
(lower magnitude) when including the non-rigid-body mode.

When a step response is obtained with and without 
decoupling from the non-rigid-body mode, an increase in 
the achievable bandwidth is shown that also results in better 
time-domain behaviour performance, as shown in Figure 6.

In summary, when a theoretical model is present, it is 
possible to obtain the exact eigenmodes of the actuators and 
the input distribution matrix. A selection can be made from 
all available modes that should be controlled or decoupled 
from VI

T ∙ H. The actuator matrix can be calculated  
as AM = (VI

T ∙ H)–1.

Practical approach
In practice, a measured transfer function is given and the 
individual masses and internal stiffnesses are often not 
known. Therefore, an approach has to be defined for ob -
taining the eigenvectors for the non-rigid-body (NRB) mode, 
along with obtaining the measured mass matrix Minv–meas 
as described in the introduction. There are various ways 
to obtain these, but here a singular-value decomposition 
is applied to the imaginary part of the measured transfer at 
the resonance frequency of the targeted mode to obtain the 
eigenvector, resulting in the eigenvector VI-resonant. For the 
mass matrix, this procedure is equivalent to today’s practice 
of taking mass-dominated frequency points of measured 
MIMO transfer functions as estimates for Minv–meas. 

We now need to find a way to extend this measured matrix 
to make it square and uniquely invertible, i.e. add an extra 
row. This row should represent the third DoF we want 
to decouple, i.e. the resonant behaviour. We suggest adding 
the eigenvector of the system resonance:

 

[* Equation 10 *] 
 

𝑨𝑨𝑨𝑨 = (𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽o ∙ 𝚲𝚲(𝜔𝜔low) ∙ 𝑽𝑽I
T ∙ 𝑯𝑯)−1𝑨𝑨model

−1  
 
 
[* Equation 11 *] 
 

𝑨𝑨𝐢𝐢𝐢𝐢𝐢𝐢−𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦−𝐍𝐍𝐍𝐍𝐍𝐍 =  [𝑨𝑨𝐢𝐢𝐢𝐢𝐢𝐢−𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦
𝑽𝑽𝐈𝐈−𝐫𝐫𝐦𝐦𝐦𝐦𝐫𝐫𝐢𝐢𝐦𝐦𝐢𝐢𝐫𝐫

] 

 
 
 

 

Furthermore, the desired mass-matrix Minv has to be 
extended on the diagonal (with unity). The compensated 
mechanics as shown in Figure 7 can be found for actuator 
matrices including and excluding the non-rigid-body mode. 

From this bode plot, the same conclusion can be drawn as 
from the theoretical approach. By including the non-rigid-
body mode in the decoupling, the diagonal terms are 
no longer actuating the non-rigid-body mode, and the 
decoupling to the off-diagonals has significantly increased. 

In summary, this method works in largely the same way as 
the theoretical approach, only now an estimate for the 
eigen mode VI-resonant has to be obtained from the frequency-
response function. We suggest simply using the peak values 
of one of the rows of the measured TFraw(ω) at ω = ωresonance 
for each input column. Alternatively, an eigenmode 
estimation method such as singular-value decomposition 
of TFraw(ωresonance) can be used to find an expression 
for VI

T ∙ H. Using this non-rigid-body mode eigenvector, 
the measured mass matrix (rigid-body eigenmodes) 
can be extended. 

Compensated mechanics for the theoretical approach for a simple example show that when 
comparing decoupling using the pseudo-inverse (case a, blue) to decoupling that includes 
the proposed non-rigid-body behaviour (case b, red), the diagonals become pure mass lines  
and the off-diagonals decouple better.

5

Time-domain step response with improved decoupling. The effect becomes smaller as the servo 
bandwidth increases.

6
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Full example
Having demonstrated the method for a simple example, 
it can also be applied to a more complex system. For this, 
use was made of a high-performance motion-stage model 
for which the measured transfer functions were generated 
using a FEM (finite-element method) model. The system is 
6-DoF controlled and has an over-actuation of 1 (there is 
one actuator more than there are con trolled DoFs). This 
means that if the actuators are positioned correctly, it should 
be possible to decouple and influence one additional mode 
on top of the rigid-body modes. 

The same method as in the practical approach section 
above was applied. Including the first non-rigid-body mode 
in the decoupling (Figure 8) yields a different decoupling 

compared to the case in which it not included. From this 
figure, it can be seen that including mode nr. 7 results 
in it remaining unactuated. 

Experimenting with decoupling from other modes did not 
always yield a better decoupling, as the ‘obsolete’ actuators 
were not in a position and/or direction that could 
significantly affect a mode. In-plane actuators therefore 
cannot be used to decouple from out-of-plane modes. There 
is thus a physical understanding as to what this extension 
of the actuator matrix can achieve. Another risk is that 
some actuators may exert significant more force than 
others, causing heating or current saturations. 

Conclusion
We have shown that using a pseudo-inverse tells the 
engineer that there is a design space that can be explored 
to obtain potentially beneficial results for decoupling. 
The (pseudo-)inverse property of returning perpendicular 
vectors can be used not only to decouple rigid-body modes 
from each other, as is often done currently, but also to 
decouple from non-rigid-body modes. This provides 
an opportunity for mechanical and mechatronic engineers 
to work together in finding optimal actuator locations. 

Both a theoretical approach and a practical approach have 
demonstrated a method to do this for a simple example. 
Including the non-rigid-body mode in the inverse actuator 
matrix resulted in a mode disappearing from the measured 
response without actively controlling it or observing it. 
Distributing forces such that the mode is not actuated 
means that there is no energy in that mode, and thus 
no response from the mode is visible. The benefit of this is:
•   fewer dynamics visible on the diagonals of the system, 

which potentially allows for higher controller bandwidths;
•   better decoupling between the logical axes, which 

indicates less cross-talk. 

From a more advanced model, we could also see that using 
the design space given by the over-dimensioned system 
could yield beneficial results. However, we could also 
conclude that the design space does not always yield 
beneficial results. The mode to be decoupled (to remain 
unactuated) has to be within the null-space of the rigid-
body modes to be actuated. If this is not the case, 
undesirable coupling may be the result. Taking this into 
consideration in the design phase, mechanical design 
changes and/or changes of actuator locations may improve 
the situation. 
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Compensated mechanics for the practical approach (using measured transfer functions) show similar 
results as the theoretical approach; the system decouples better when the non-rigid-body mode 
(case b, red) is taken into account than when it is not taken into account (case a, blue). 

7

Compensated mechanics for a FEM-based motion-stage model show that when including a specific 
mode (case b, red) in addition to the rigid-body modes (case a, blue), a better decoupling can be 
found. Here, a subset of the DoFs is shown, i.e. only Z, Rx and Ry. (No numbers along the axes for 
model-owner privacy reasons)
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