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Introduction
Unwanted residual vibrations often limit the productivity 
of product handling by vacuum grippers or other suspended 
means. The pick & place actions in robotic systems often 
contribute the most to the vibration of the products to 
be handled. Input shaping provides a way to suppress the 
residual vibration frequency from the reference by shaping 
the spectral content of the motion profile by means of time-
delay filters. Singer and Seering [1] created the framework 
of input shapers in the nineties. 

For the control of cranes, the usefulness of input shaping 
is well known and implemented. However, a big knowledge 
gap is noted for applying input shaping to robotic systems. 
When robots have to operate in unknown environments, 

Input shaping can effectively reduce residual vibrations in flexible systems induced by 
the position trajectory. But misunderstanding of the implementation aspects and its 
use has led to limited applications in mechatronic systems, where the shaped reference 
trajectory could result in a reduced overall movement time. The main contribution of 
this article is a design method based on the relationship of the relative overshoot with 
the ratio of vibration time and move time. This allows the determination of the highest 
acceleration value that keeps accuracy within the desired range.

it is not sufficient to plan beforehand. They need to react to 
their sensors. In that case, a trajectory needs to be generated 
to execute the task within constraints such as maximum 
speed and acceleration, interpolating between waypoints 
to provide the reference position trajectory in real time. 
Trajectories for moving in a single direction, with 
constrained acceleration, are shown in Figure 1. We ignore 
the constant-velocity part of the trajectory, as it has limited 
effect on the dynamics and is not even reached for fast pick 
& place moves. 

The topic of trajectory generation is related to the study 
of cam-shaft profiles [2], where cycloid profiles are widely 
used. Wim van der Hoek [3] introduced the u0(τ) diagrams 
to clarify the relation between the relative overshoot u0 and 
the relative vibration time τ. The objective was the design 
of lightweight and very stiff mechanisms in order to achieve 
high positional accuracy at high speeds. 

Using Van der Hoek’s notation, we define:

 

shaping of the parabolic reference results in pulsed acceleration profiles for ZV
and EI as shown in Figure 1. Notice here the difference with the smooth accelera-
tion profile of the cycloid and the cubic. Input shaping of the trajectory is realised
by a simple digital filter and can be used to process the acceleration, velocity or
position data such that the implementation is independent of trajectory generation
and control algorithms.

The frequency responses of the input shapers are plotted in Figure 2. The
magnitude plot shows stop bands around the natural frequency 1/Td: the damped
natural vibration is suppressed. The EI shaper has the widest stop band at the
price of a time elongation Td as demonstrated in table 1. The negative shapers
as reported by [5] reduce the move time significantly. However their disadvan-
tage is the excitation of high frequency modes and the lack of guarantees for the
shaped input signal. They cannot be used reliably. Conventionally designed fre-
quency domain filters such as notch and low pass filters are never better than the
mentioned input shapers, as proved in [6].

2. Performance Criteria for pick and placement motions

The unwanted vibrations are typically excited if the spectral content of the tra-
jectory profile overlaps with the resonance frequencies of the mechanism. There-
fore we define the relative overshoot u0 using the notation in van den Hoek [3]:

u0 =
max |r − x(t)|

r
, t > Tm (1)

τ =
Td

Tm

(2)

x(t) is the position of the object. r is the reference end position. Since input shap-
ing leads to elongation of the motion profile, we include this in the move time,
see Table 1. The overshoot u0 is a function of τ which is the ratio of the damped
vibration time Td and the shaped reference move time Tm. The importance of
the u0(τ) relation is that for a prescribed displacement, overshoot and given vi-
bration time, a maximum value of τ is found, resulting in a minimum move time
of the trajectory. Additionally figure 3 shows the influence of τ in the frequency
response diagrams for a horizontal parabolic trajectory for a robotic suctioned ob-
ject. [7] concludes that the combined input shaper and PD feedback control results
in superior controllers for the one mass spring damper systems when the design
constraints do not force an over-damped system. The input shapers reduce the
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Here, x(t) is the position of the object, r is the reference 
end position, Td is the damped vibration time and Tm is 
the shaped reference move time. 

In this paper, we use the u0(τ) diagrams to relate overshoot 
to relative move time for selecting input-shaper methods 
and maximum acceleration. Trajectory profiles are 
commonly expressed in polynomials of second or higher 
order. It is usually concluded that their limited third 
derivative, or jerk, results in an attractive response as it 
approaches the cycloid; see Figure 1. However, the parabolic 
profile features the shortest move time. The parabolic 

Acceleration-constrained comparison of parabolic, cubic, cycloid and 
ZV- and EI-input-shaped parabolic trajectories. ZV and EI stand for Zero 
Vibration and Extra Insensitive, respectively; see the text for explanation.
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and cubic, or Jerk-Limited (JL), trajectory profiles are 
available in most industrial digital motion controllers. 
The frequency response of the output x of the system 
excited by a (ZV-input-shaped) parabolic trajectory 
consists of sync pulses; see Figure 2 for an example.

The framework of input shapers was created in the time 
domain. For educational purposes, we will review input 
shapers and trajectory generation in both the time and 
the frequency domain (a detailed analysis is given in [4]). 
Typically, the main system excitation is not external but is 
generated by the trajectory itself. Some residual vibrations 
may exceed the error bounds and, therefore, affect the 
overshoot and settling performance. Figure 2 depicts 
the frequency spectrum of a flexible system excited 
by an unshaped and a shaped parabolic trajectory. 

Input-shaping methods use superposition of delayed parts 
of the original profile such that the steady-state position 
equals the original end position. The residual vibration 
is suppressed by generating an input that cancels its own 
vibration. The simplest input shaper, the ZV (Zero 
Vibration) shaper, provides zero vibration at the desired 
frequency and consists of two impulses. The first impulse 
starts the system vibrating, the second impulse is delayed 
by a half period of the damped vibration, thereby cancelling 
it. The two parameters of the ZV shaper are the damped 
vibration period Td and the damping ratio ζ.

The Extra Insensitive (EI) method [1] uses an additional 
branch (a third pulse trailing the existing two ZV pulses) 
with a full delay of Td. Unlike the ZV shaper, it does not 

attempt to force the vibration to zero. A small level of vibration 
is allowed at the modelling frequency, while enhancing the 
insensitivity to frequency modelling errors. The ZV shaper and 
its derivative(s) are made using a constraint that there should 
be zero vibrations at the desired frequency. The constraints 
of the shaper could be relaxed such that its residual vibration 
percentage remains below a tolerable vibration level specified 
by the designer. The EI shaper utilises this idea. The main 
advantage of relaxing these constraints is that a higher 
robustness can be achieved with the same time elongation 
of the shaped trajectory as with the ZVD (Zero Vibration 
Derivative) shaper. The large insensitivity of high-order 
EI shapers is rarely needed. The three parameters of 
the EI shaper are Td, ζ and tolerable vibration level. 

The jerk-limiting input shaper (JL) can be created by a 
Finite Impulse Response (FIR) filter applied to the parabolic 
trajectory or by direct generation of a trajectory. The JL 
shaper has only one parameter, the desired damped 
vibration period. The difference equations of these input 
shapers are given in [4]. 
Input shaping of the parabolic reference results in pulsed 
acceleration profiles for ZV and EI as shown in Figure 1. 
Notice here the difference with the smooth acceleration 
profile of the cycloid and the cubic profile. Input shaping 
of the trajectory is realised by a simple digital filter and can 
be used to process the acceleration, velocity or position data 
such that the implementation is independent of trajectory 
generation and control algorithms.

The frequency responses (Bode diagrams) of the input 
shapers are plotted in Figure 3. The magnitude plot shows 

Frequency responses of a robotically suctioned object excited by a parabolic (black) and ZV-input-shaped parabolic (green) trajectory, respectively.
(a) τ = 0.5.
(b) τ = 0.7.
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stop bands around the natural frequency 1/Td; the damped 
natural vibration is suppressed. The EI shaper has the 
widest stop band at the price of a time elongation Td as 
demonstrated in Table 1. The negative shapers as reported 
by [5] reduce the move time significantly. However, their 
disadvantage is the excitation of high-frequency modes 
and the lack of guarantees for the shaped input signal. They 
cannot be used reliably. Conventionally designed frequency-
domain filters such as notch and low-pass filters are never 
better than the mentioned input shapers, as proven in [6].

Performance criteria for pick & place motions
The unwanted vibrations are typically excited if the spectral 
content of the trajectory profile overlaps with the resonance 
frequencies of the mechanism. As input shaping leads to 
elongation of the motion profile, we include this in the 
move time, see Table 1. The importance of the u0(τ) relation 
is that for a prescribed displacement, overshoot and given 
vibration time, a maximum value of τ is found, resulting 
in a minimum move time of the trajectory. 

Additionally, Figure 2 shows the influence of τ in the 
frequency response. In [7], it is concluded that the 
combined input-shaper and PD-feedback control results in 
superior controllers for one-mass-spring-damper systems 

when the design constraints do not force an overdamped 
system. The input shapers reduce the overshoot towards 
zero, while the feedback controller reduces the non-
linearities, disturbances and modelling errors. The u0(τ) 
relations will be derived in the next section, to reach 
conclusions on the superiority hypothesis of the combined 
PD-feedback control and input shaper for robotic systems 
handling swinging products.

Robotic pick & place of swinging products
The robot mechanism is considered as a rigid body; the 
bandwidth of the joint controllers is significantly higher 
than the resonance frequency of the product, while the 
lowest resonance frequency of the mechanical system 
is typically much higher than the controller bandwidth. 
Robotic packaging requires fast pick & place cycles of 
suspended food packages. When suction cups are used, 
the product turns into a swinging load when moved. For 
a physical model of the robot manipulator and the product, 
we consider the robot end-effector as a position-controlled 
cart that moves in the horizontal direction and a load that 
swings in the vertical plane. The horizontal movement x(t) 
of the load is observed and expected to meet the positional 
requirement; see Figure 4.

The equations of motion of the horizontal movement of the 
object (m) are based on a pendulum driven by the mass M, 
as depicted in Figure 4, with two independent coordinates q 
and θ. The horizontal movement of m depends on these two 
coordinates according to (6). The position-controlled 
motion of the cart is modelled by a spring Kp and a damper 
Kv to model a digital PD controller. The bandwidth ωc and 
relative damping βc of the position-controlled cart are:

 

Table 1: Input shaped reference trajectories and their move times. Td : damped natural vibration
time, Tacc : acceleration time of the parabolic profile

Trajectory Move time Tm τ
and input shaper

Parabolic 2Tacc
Td

2Tacc

Parabolic & ZV 2Tacc + Td/2
Td

2Tacc+Td/2

Parabolic & EI or JL 2Tacc + Td
Td

2Tacc+Td

is modelled by a spring Kp and a damper Kv to model a digital PD controller. The
bandwidth ωc and relative damping βc of the position controlled cart are:

ωc =

√
Kp

(M +m)
, βc =

Kv

2
√
Kp(M +m)

(3)

Lagrange’s equations lead to the differential equations of motion:
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Figure 4: Abstraction of the handling of a swinging product picked by a suction cup: A
suspended pendulum driven by a position-controlled cart

Kp(r − q)− (Kv +D)q̇ = (M +m)q̈ +mlθ̈ cos(θ)−mlθ̇2 sin(θ) (4)

mlq̈ cos(θ) +ml2θ̈ +Dmθ̇ +mlg sin(θ) = 0 (5)
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Table 1
Input-shaped reference trajectories and their move 
times and relative vibration times. 

Td = damped natural vibration time.

Tacc = acceleration time of the parabolic profile.

Trajectory and 
input shaper

          Tm            τ

Parabolic 2Tacc Td / (2Tacc)

Parabolic & ZV 2Tacc + Td /2 Td / (2Tacc + Td /2)

Parabolic & EI or JL 2Tacc + Td Td / (2Tacc + Td )

Frequency responses of the input shapers.

3

Abstraction of the handling of a swinging product picked by a suction 
cup: a suspended pendulum driven by a position-controlled cart.
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The Lagrange equations lead to the differential equations 
of motion:
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 x = q + l sin(θ) (6)

The natural frequency ωn of the vibration of the product can be obtained from (4)
by neglect of the damping of the cart D and of the mass Dm at small values of θ:

ωn =

√
g(M +m)

Ml
≈

√
g

l
(m ≪ M) (7)

and depends largely on l, the equivalent length of the product in the gripper. The
control scheme in Figure 5 shows the position of the product, the controlled vari-
able x, which is not directly measured but estimated from a secondary measure-
ment q, the actuator positions, by shaft encoders The joint feedback controllers
C eliminate disturbances such a load changes and friction. Typically digital PD
controllers use state feedback of the position and speed of the motor.

Initially a sensor tag attached is attached to the product to be used for measur-
ing x and to shape the controller. The values Td and ζ of the suspended product
could be derived from the joint position error of the drive signal in the servo con-
trollers. From (4), (5) and (6) simulations of the responses of the load position

r
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Input shaper Joint controlReference
Trajectory  

Joint coordinates 
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Inverse 
Kinematic 
transformation
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Suspended 
product

Robot 
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r u

Figure 5: Robotic control structure with inferential control. The dashed line indicates that the
performance output x is not measured during operation.

for parabolic and input shaped parabolic trajectories were collected see Figure 8.
Typically, the joint controllers of the robot are shaped for a fast and accurate re-
sponse with high servo stiffness of the end effector resulting in a bandwidth higher
than the vibration frequency of the load. The term mlq̈ cos(θ) in (5) represents the
inertial force transmitted to the pendulum mass m and is usually highest at the
moment the acceleration switches to deceleration. To provide additional damping
of the pendulum, we match the bandwidth of the controller to the frequency of
vibration ωc = ωn with relative controller damping βc = 1. As a result, the
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measurement q, i.e. the actuator positions, by shaft 
encoders. The joint feedback controllers C eliminate 
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control parameters are reduced to:

Kp = ω2
n(M +m), Kv = 2ωn(M +m). (8)

The input shaper ZV combined with this impedance match, we name ZV&IM in
the sequel. The simulation results are depicted in Figure 6. The move time Tm is
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Figure 6: Simulation results for the cart-pendulum system: Relative overshoot u0 as a function of
τ for shaped and unshaped parabolic trajectories; the damping offset is 10%

set to realise τ using the values in table 1 with known vibration period Td accord-
ing to the scheme of Figure 7 demonstrating a design procedure for the parameters
of the input shapers and the maximal acceleration of the parabolic trajectory. This
maximal acceleration is not a constant and needs to be selected for each critical
move!
The overshoot is constrained by the length l. At τ = 1/2, 1/4, 1/6, ... the velocity
of the pendulum approaches zero, the reference acceleration switches to deceler-
ation resulting in a minimal swing in the dwell period. This behaviour was also

8

 (8)

The input shaper ZV combined with this impedance match 
is named ZV&IM. 

Simulation results
The simulation results are depicted in Figure 6. The move time 
Tm is set to realise τ using the values in Table 1 with known 
vibration period Td according to the scheme of Figure 7, 
demonstrating a design procedure for the parameters of the 
input shapers and the maximum acceleration of the parabolic 
trajectory. This maximum acceleration is not a constant 
and needs to be selected for ‘no swing moves’.

At unit fractions of Td /Tacc, where τ = 1/2, 1/4, 1/6, …, 
the overshoot of the pendulum approaches zero. Due to 
the strong inertial coupling, the swing excited during 
the acceleration period is exactly cancelled during the 
deceleration period. This behaviour was also described 
by [3, chapter 8].

In the range τ < 0.4, all input shapers reduce the overshoot 
significantly. Here, the move time is much larger than the 
vibration time and only a low level of vibration is excited. 
In the interval 0.4 < τ < 0.6, the EI and JL input shapers do 
not contribute to overshoot reduction. For τ > 0.6, the move 
time approaches the vibration period. The ZV input shapers 

Robotic control structure with inferential control. The dashed line indicates that the performance 
output x is not measured during operation.
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Simulation results for the cart-pendulum system: relative overshoot u0 
as a function of τ for shaped and unshaped parabolic trajectories. 
The damping offset (deviation from the model value) is 10%.
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reduce the overshoot significantly, with a factor of 10, 
for values of τ < 0.8. The EI and JL input shapers reduce 
the overshoot as well, but not as strong as the ZV shaper. 
The responses of the input shapers ZV, JL and ZV&IM 
with equal move time (τ = 0.7) are shown in Figure 8. 

The unshaped response is hardly damped, which results in 
vibrations approaching the equivalent length of the product. 
Clearly, the ZV shaper has the highest overshoot reduction. 
The sensitivity of the relative overshoot to variations of the 
equivalent pendulum length l is plotted in Figure 9. The ZV 
shaper has the lowest overshoot when tuned well in case of 
small variations. Within the range of 10% length variations, 

the ZV shaper features the highest suppression. In the range 
of 10-20%, the ZV shaper performs best when the band-
width of the robot servo controllers is matched to the 
vibration frequency of the swinging product. The EI shaper 
provides better insensitivity for even larger variations.

Experimental results
The high-volume industrial case packaging of sealed food 
is typically realised with fast delta robots of which the paths 
can be programmed to stack the products identified by a 
fixed camera at the entry of the conveyor belt. An example 
of a viscous product in a fluid bag is demonstrated in 
Figure 10. The throughput limitation of the point-to-point 
movements is caused by the peel-off and the oscillations 
during placement. Inaccurate placement or collision with 
the box by overshoot can result in damaged products or 
misplacement. Different travel times between axes can be 
equalised by delaying the axis taking the longest travel time 
or shaping all axes equally.

It has been shown in [8] that the vacuum-gripped products 
suspended by the end-effector behave dominantly as a 
pendulum. The product variations are limited to frequencies 
in the range of 2-2.8 Hz. To detect the displacement of the 
product, a visual fiducial system attached to the front of the 
bag is used, as shown in Figure 10. The 3D pick & place 
path is defined by four user-defined positions, P0 to P3. 
The straight lines are connected by blends (bent curves) 
to create a smooth path defined by B-splines. The 3D-task-
oriented coordinate system uses the inverse kinematic 
transform to create the joint displacements every 1 ms. 
Input shaping is executed in task coordinates. 

Figure 11 plots the experimental results (25 measurements) 
for parabolic and its ZV-shaped trajectories for horizontal 

Design procedure for the trajectory generator input shaper.
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input shaper

Determine natural frequency &
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Set parameters for
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7

Displacement responses for parabolic shaped trajectories. Overshoot is 
25.5 mm (unshaped), 9.4 mm (JL), 2.9 mm (ZV&IM) and 2.7 mm (ZV), 
respectively. The damping offset is 10%, at τ = 0.7.

8

9

Sensitivity of the overshoot to variations of the equivalent pendulum 
length for ZV, EI, JL and ZV (with matched robot servo stiffness), at τ = 0.7.
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and vertical directions. Note that the acceleration of the 
product-centre point (PCP) is reduced by almost a factor 
of two. To investigate the ZV-shaper performance in 
a production environment, a use case test was executed: 
the placement inside a box within an overshoot of less than 
15 mm. A twofold decrease in travel time at the expense of 
slightly higher product accelerations was found when both 
x- and z-axes were input-shaped during motion. 

To find the move time decrease until the product starts to 
peel off, a maximum horizontal PCP acceleration of 20 m/s2 
was imposed. This resulted in a 14% decrease in travel time 
and a vibration reduction of 32%. Synchronisation was 
needed to conserve the original spatial reference path. 

Pick & place with flexible-joint robots
In practice, robot mechanisms cannot be considered as rigid 
bodies and their dynamical behaviour is often dominated 
by the lowest frequency mode. Typically, a model with 
two masses connected by springs and dampers provides 
an effective model, as depicted in Figure 12.

The equations of motion are:
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product accelerations was found when both x and z axes were input shaped dur-
ing motion. To find the move time decrease until the product starts to peel off, a
maximum horizontal PCP acceleration of 20 m/s2 was imposed. This resulted in
a 14% decrease in travel time and vibration reduction of 32%. Synchronization is
needed to conserve the original spacial reference path. Different travel times be-
tween axis could be equalized by delaying the axis taking the longest travel time
or shaping all axes equally.

5. Pick and place with flexible joint robots

In practice robot mechanisms cannot be considered as rigid bodies and the
dynamical behaviour is often dominated by the lowest frequency mode. Typically
a model with two masses connected by springs and dampers provides an effective
model for a flexible-joint as depicted in Figure 12.
The equations of motion are

m2q̈ = Kp(r − q)−Kv q̇ − d2q̇ − c(q − x)− d(q̇ − ẋ) (9)

m1ẍ = c(q − x) + d(q̇ − ẋ) + Fd (10)

The resonance and anti-resonance frequencies are:

ωr =

√
c(m1 +m2)

m1m2

ωa =

√
c

m1

(11)

12

 (9)
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product accelerations was found when both x and z axes were input shaped dur-
ing motion. To find the move time decrease until the product starts to peel off, a
maximum horizontal PCP acceleration of 20 m/s2 was imposed. This resulted in
a 14% decrease in travel time and vibration reduction of 32%. Synchronization is
needed to conserve the original spacial reference path. Different travel times be-
tween axis could be equalized by delaying the axis taking the longest travel time
or shaping all axes equally.

5. Pick and place with flexible joint robots

In practice robot mechanisms cannot be considered as rigid bodies and the
dynamical behaviour is often dominated by the lowest frequency mode. Typically
a model with two masses connected by springs and dampers provides an effective
model for a flexible-joint as depicted in Figure 12.
The equations of motion are

m2q̈ = Kp(r − q)−Kv q̇ − d2q̇ − c(q − x)− d(q̇ − ẋ) (9)

m1ẍ = c(q − x) + d(q̇ − ẋ) + Fd (10)

The resonance and anti-resonance frequencies are:

ωr =
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c(m1 +m2)
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The resonance and anti-resonance frequencies are:
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product accelerations was found when both x and z axes were input shaped dur-
ing motion. To find the move time decrease until the product starts to peel off, a
maximum horizontal PCP acceleration of 20 m/s2 was imposed. This resulted in
a 14% decrease in travel time and vibration reduction of 32%. Synchronization is
needed to conserve the original spacial reference path. Different travel times be-
tween axis could be equalized by delaying the axis taking the longest travel time
or shaping all axes equally.

5. Pick and place with flexible joint robots

In practice robot mechanisms cannot be considered as rigid bodies and the
dynamical behaviour is often dominated by the lowest frequency mode. Typically
a model with two masses connected by springs and dampers provides an effective
model for a flexible-joint as depicted in Figure 12.
The equations of motion are

m2q̈ = Kp(r − q)−Kv q̇ − d2q̇ − c(q − x)− d(q̇ − ẋ) (9)

m1ẍ = c(q − x) + d(q̇ − ẋ) + Fd (10)

The resonance and anti-resonance frequencies are:

ωr =

√
c(m1 +m2)

m1m2

ωa =

√
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The closed-loop bandwidth ωc is selected to minimise 
the position error of the link at the start of the dwell [9] 
at a servo damping ratio of 1.0:

m1

q(t) x(t)

c
Fc

d2

r(t) Kp

Kv m2

Reference   Controller            Actuator mass                          Link mass

Figure 12: Two mass damper spring model to represent the actuator axis coordinate q and
link x position of a flexible-joint robotic mechanism. The actuator mass m2 is driven by
a PD controller with parameters Kp, Kv via a motor and current amplifier such that the
force is proportional to the output of the controller.

The closed loop bandwidth ωc is selected to minimize the position error of the
link at the start of the dwell [9] at 1.0 servo damping ratio:

ωc = 0.8ωa Kp = (m1 +m2)ω
2
c Kv = (m1 +m2)ωa (12)

The frequency responses of the open loop and controlled (closed-loop) system are
depicted in Figure 13. In Figure 14 all simulation results are depicted in a u0(τ)
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Figure 13: Control for a two-mass-spring-damper system.

diagram, similar to Figure 8.

For τ < 0.2 the move time is much longer than the natural vibration period
and the system behaves similar to a rigid body. The u0(τ) relation is quadratic.
The EI,JL and ZV shaper result in, respectively, a 20-, a 6-, and a 5-fold reduction
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For τ < 0.2 the move time is much longer than the natural vibration period
and the system behaves similar to a rigid body. The u0(τ) relation is quadratic.
The EI,JL and ZV shaper result in, respectively, a 20-, a 6-, and a 5-fold reduction
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Swinging cheese bag picked by a delta robot with vacuum gripper (source: Blue Print Automation, Woerden (NL)).  
The view on the right shows the test path of the product-centre point (PCP); TCP is the tool-centre point.
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11

Measured displacement, velocity and acceleration of unshaped and shaped responses for tool-centre 
point (left) and product-centre point (right) in horizontal and vertical direction. For each quantity, 
three measurement curves have been plotted (maximum, minimum and modus response) at τ = 0.4.

Two-mass-damper-spring model to represent the actuator axis coordinate q and link position 
x of a flexible-joint robotic mechanism. The actuator mass m2 is driven by a PD controller 
with parameters Kp , Kv via a motor and a current amplifier such that the force is proportional 
to the output of the controller.
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The frequency responses of the open-loop and controlled 
(closed-loop) system are depicted in Figure 13.

Simulation results
The simulation results are depicted in Figure 14, which 
corresponds to Figure 6 for the cart-pendulum-mass case. 
For τ < 0.2, the move time is much longer than the natural 
vibration period and the system behaves similar to a rigid 
body. The u0(τ) relation is quadratic. The EI, JL and ZV shapers 
result in, respectively, a 20-, 6- and 5-fold reduction of the 
overshoot as compared to the parabolic trajectory with equal 
move time. The EI shaper features the smallest overshoot 
compared to the other shapers with equal move time; 
this comes at the price of a slightly higher driving force. 

This result is important for accurate applications that require 
minimum overshoot. Here, the application area is accurate 
positioning with a long move time, such as in portal coordinate 
measuring machines [10], electron microscopes and accurate 
3D printing.

Control for a two-mass-spring-damper system.
(a) Open-loop joint transfer function.
(b) Closed-loop joint transfer function.

13a 13b

Two-mass-spring-damper system: relative overshoot u0 as a function 
of τ for unshaped and ZV-, EI- and JL-shaped parabolic trajectories. 
The shaper frequency mismatch is 5%, the damping offset is 10%.

14

Simulation results for link position and drive acceleration response 
for the unshaped and the ZV-input-shaped trajectory, at τ = 0.75.

15

In the range 0.4 < τ < 0.7, input shaping has a lower 
contribution to reducing the vibration. The JL shaper even 
worsens the performance. For τ > 0.7, the move time 
approaches the period of natural vibration; a significant 
reduction of the vibration can only be obtained with the ZV 
shaper. Note that in this range the overshoot of the parabolic 
trajectory exceeds 5%, which is often unacceptable.

The time responses with equal travel time τ = 0.75 are 
depicted in Figure 15. The overshoot is reduced by 50%. 
State-of-the-art wire bonders for semiconductor devices 
should perform motions with horizontal strokes of one tenth 
of a millimeter up to several millimeters while exhibiting 
peak accelerations of more than 250 m/s2. Such motions may 
excite machine dynamics and induce unwanted vibrations 
that hamper the quality of bonding. Experimental results 
with input shapers show a 70% variance reduction of 
the amplitude of the residual vibration (τ ≈ 0.8).
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Conclusion
A method of control has been developed that eliminates 
the need for restricted accelerations for swing-free robotic 
product handling. This method uses fast input shapers 
to eliminate the natural vibration from the reference in the 
task space of the robot, such that the shortest acceleration/
deceleration time is used for the reference trajectory.

The relative move time τ has a major influence on the over-
shoot with and without the use of input shapers. Relations 
of the relative overshoot as a function of τ for the relevant 
input shapers have been derived for robotic pick & place 
positioning of swinging products and for flexible-joint 
systems. This provides the backbone of a design procedure 
for the parameters of the input shapers and the allowable 
acceleration of the parabolic trajectory; these need to 
be selected for each critical point-to-point move.

For swinging products with length variations less than 10%, 
the ZV shaper features the largest vibration reduction. 
In the range of 10-20% variations, the ZV shaper performs 
best when the bandwidths of the axis motion controllers are 
matched to the vibration frequency of the swinging product.

For accurate applications with a long move time with flexible-
joint robots that require minimum overshoot, the EI shaper is 
preferred. Jerk-limited reference trajectories can be regarded 
as input-shaped parabolic reference trajectories. Their 
performance is inferior to ZV shapers, but can effectively 
reduce the excitation of high-frequency modes.

A clear distinction should be made between trajectory 
generation to prevent saturation of the actuators only, 
to enable path synchronisation, and filtering of the trajectory 
for dynamic swing-free response, to obtain minimum move 
time and swing-free results. The trajectory, as such, is 
parameterised by displacement, move time and maximum 
acceleration only. Jerk and snap phases of the trajectory need 
to be avoided, as they create trajectories inferior to those 
achieved with the control method described in this article.
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