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EDITORIAL

Artificial intelligence (AI), in particular machine learning and deep learning, is on the rise in the high-tech 
industry, with major applications in the controlling and monitoring of complex systems. System control can 
be enhanced with AI to ensure better system performance, while system monitoring provides large amounts 
of sensor and control data that can be analysed using AI. 

For example, AI can facilitate the step from corrective to predictive maintenance, with smart data analysis 
holding the promise of maintenance on time (thus preventing machine downtime and production losses) 
at lower costs (because of less damage due to wear and breakdown). This Mikroniek issue features several 
appealing examples of AI’s control and maintenance potential using the concept of the much-hyped digital 
twin.

However, due to the focus on ‘big data’, machine learning in combination with software engineering has 
become a mainly data-related activity. But there is more to AI than data science and software engineering; it 
cannot be just embedded on a computer. Following the philosophical debate about AI, I plead for embodied 
AI, which requires the inclusion of a ‘body’, i.e. a machine, a robot or another instrument or physical tool. 
AI can only make sense if it is – through sensing and actuating – connected to the physical world.

Therefore, AI-infused systems engineering has to be complemented by other engineering disciplines – with 
control engineering as an overarching engineering activity – to produce optimal, more ‘realistic’ solutions. 
At universities, however, the embedded AI approach is dominant in computer-science/informatics curricula, 
while a holistic, multidisciplinary view of AI is lacking. Moreover, in times when energy consumption 
reduction is high on the agenda, we have to move away from brute-force AI modelling; for example, current 
deep-learning neural networks use far too many parameters, which calls for extensive computations drawing 
on energy-hungry data centres. We have to make more intelligent use of information from the real world, 
exploiting the currently underestimated power of control theory (cybernetics).

Considering the various AI approaches that are available, this means that, for example, we have to rely more on 
unsupervised learning. In supervised learning, training the AI model means that it is fed with input data, while 
the desired output is prescribed. In this approach, not all available information is used, because a real-world 
system produces output data as a consequence of the control it is subjected to. In unsupervised learning, 
however, this output can be used as additional input for the training, enabling the AI model to implicitly learn 
about control strategies. To state it boldly, the model develops a kind of instinct for generating the best output, 
just as human intelligence to a great extent relies on instinctive responses to external stimuli.

To promote a shift from embedded to embodied AI, academia has to reform its curriculum, industry has 
to abandon its data-centric approach of the digital twin, and government has to augment its AI policy. For 
example, in 2021 the Netherlands Scientific Council for Government Policy (WRR) published the report 
Opgave AI. De nieuwe systeemtechnologie (Mission AI. The new System Technology).

To wrap up, I propose adding a few recommendations concerning AI development and implementation 
to this report:
• to include (the connection to) the real world and, hence, more physically oriented engineering disciplines;
•  to better balance the various resources, thus reducing the share of informatics as well as the volume of data 

used;
•  to recognise the beneficial value of control theory/cybernetics and, as a consequence, gain (much needed) 

extra degrees of freedom in designs.

By doing this, the best inspiration source for AI comes into view – namely humans, who became intelligent 
without informatics!

Jan Jacobs
AI/deep learning/machine learning consultant
jan.wm.jacobs1@gmail.com

FROM EMBEDDED TO EMBODIED AI

4  nr 5 2023  



THEME – OPPORTUNITIES OF DIGITAL TWINS FOR HIGH-TECH SYSTEMS

FROM FAULT DIAGNOSIS 
AND PREDICTIVE 
MAINTENANCE TO CONTROL 
RECONFIGURATION 

AUTHORS’ NOTE

Koen Classens (Ph.D. 
candidate), Maurice Heemels 
(professor) and Tom Oomen 
(professor) are all associated 
with the Control Systems 
Technology group in the 
department of Mechanical 
Engineering at Eindhoven 
University of Technology, 
the Netherlands.
Jeroen van de Wijdeven is 
a senior researcher at ASML, 
Veldhoven (NL).

k.h.j.classens@tue.nl
www.tue.nl/cst 
www.asml.com

KOEN CLASSENS, JEROEN VAN DE WIJDEVEN, MAURICE HEEMELS AND TOM OOMEN

Introduction
The economic value of high-tech production equipment 
is largely determined by its productivity, which is, in turn, 
heavily related to its uptime. Without maintenance, it is not 
a question whether a machine will fail, but rather when it will 
fail. Unexpected failure often results in downtime, leading to 
a severe loss of productivity. These unexpected breakdowns 
can be attributed to various factors, such as defects, the ageing 
of system components, and wear and tear, among others. 

Ideally, critical faults are detected in an early stage and handled 
such that downtime is minimised. Traditionally, faults have been 
addressed through preventive maintenance strategies or reactive 
responses. In sharp contrast to these traditional approaches, 
predictive maintenance offers a way to further minimise equipment 
downtime [1,2]; see Figure 1. This is achieved by detecting faults 
within the equipment and precisely pinpointing their origin, 
a process known as fault detection and isolation (FDI) [3,4].

Digital twins are increasingly being developed for industrial 
high-tech systems [5-8]. In sharp contrast to the popularity that 
artificial intelligence (AI) based solutions for fault diagnosis 

Digital twins are increasingly being developed for industrial high-tech systems. In this 
article, we outline the exciting opportunities that digital twins have to offer for fault 
diagnosis, predictive maintenance, and controller reconfiguration. The proposed solutions 
increase economic value by minimising downtime through nonintrusive diagnostics.

have gained [9-11], we argue that model-based approaches 
should form the core foundation of digital twins for FDI in 
high-tech systems [12]. Typically, models of the system have 
been created prior to commissioning a machine. These models 
range in complexity from simple first-principles modelling 
to data-enriched finite-element modelling (FEM), or they 
can be identified during the system integration phase. 
These models, developed during the machine’s design and 
integration phases, are at the heart of digital twins for FDI and 
constitute a system of interconnected systems. Despite the trend 
towards more AI-based solutions, we argue that the building 
blocks for digital twins for fault diagnosis were readily available 
far before the digital twin concept gained prominence in 
the early 2000s [13].

Surprisingly, after system integration and controller design, 
the developed models are often left unused. In sharp contrast, 
we propose to repurpose these models, since these models 
have a predictive power and can be harnessed in the form 
of a digital counterpart that is continuously informed with 
real-time data through already existing sensors and actuators. 

Illustration of three different methods to perform maintenance. Responding reactively leads to unexpected downtime and typically a long repair time. Preventive strategies lead to more 
interruptions than strictly necessary. Predictive maintenance is preferred as it exploits data and models to anticipate and prevent equipment failures, improving overall operational efficiency.
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THEME – OPPORTUNITIES OF DIGITAL TWINS FOR HIGH-TECH SYSTEMS

Properly designed digital counterparts have the capability 
to accurately predict the behaviour of the machine. 
Consequently, detection of an increasing mismatch between 
the model and the machine can indicate an upcoming failure. 
This yields the opportunity for scheduled instead of 
unscheduled service actions. As such, they provide major 
opportunities for enhancing uptime [12] [V1].

As the demand for higher performance increases, machines 
are evolving into more intricate systems. Their complexity 
becomes apparent through the increasing presence of actuators, 
sensors and components, which, in turn, generates a vast 
volume of data that can be harnessed for multiple purposes. 
Firstly, this data can be used to enhance the predictive 
capability of the digital counterpart. Secondly, the data can be 
used for monitoring and detection of anomalies. Moreover, 
after successful detection additional actuators and sensors 
might allow addressing the fault through effective self-healing. 

For instance, by reallocating the control effort among the 
remaining healthy actuators, so-called control reconfiguration.

As opposed to the opportunities arising from the abundance 
of actuators and sensors, this article also highlights several 
challenges that come with the growing complexity of systems 
in the context of fault diagnosis. Firstly, the increasing number 
of components gives rise to a greater number of potential 
fault scenarios, complicating the task to isolate the root cause. 
Secondly, for successful fault detection, it must be guaranteed 
that faults are distinguished from external disturbances, 
inherently present in any system, while simultaneously 
accounting for uncertainty in the system model. Thirdly, 
feedback controllers in mechatronic systems are designed to 
minimise the effects of disturbances and anomalies, making 
fault detection more difficult [14]. At the same time, faults in 
closed-loop controlled systems may be particularly hazardous 
as these affect machine performance and stability margins [15].

In this article, we first show the basic functionality of a 
model-based fault-diagnosis system and illustrate how to 
exploit the available models for basic FDI filter design. Sub-
sequently, we illustrate how to give robustness guarantees 
and demonstrate the estimation of changing system 
dynamics. Finally, it is shown how to exploit fault information 
to enhance uptime through control reconfiguration. 

Model-based fault-diagnosis system
Every fault-diagnosis system relies on data sourced from 
the system, such as actuator, controller and sensor data. 
This data can be processed offline, but also online during 
normal production. Fault-diagnosis systems processing this 
data can be designed in different ways [16-19], including 
data analyses, and machine-learning algorithms. 

Model-based approaches acquire and process the data 
concurrently with the control algorithm and thus in real time, 
as schematically depicted in Figure 2. The output of the fault-
diagnosis system is a signal or data stream that aids in identifying 
the presence of faults or anomalies within the system. 
Analysing these specifically designed signals helps diagnose 
and locate the specific fault in the system. So, summarising, 
faults that are difficult to detect directly in original data 
sources and/or suppressed by a feedback control loop will 
become visible in the output of the fault-diagnosis system.

In contrast to offline data processing, a significant 
advantage of online methods, such as model-based 
methods, is their ability to enable nearly instantaneous 
fault detection. One potential drawback of model-based 
approaches lies in their reliance on the accuracy of 
the underlying model. Fortunately, when it comes to 
mechatronic systems, precise models are readily available 
even before a machine is commissioned. The complexity of 

Schematic overview of a closed-loop controlled mechatronic system 
subjected to faults and disturbances. Data is extracted from the 
controlled system, which serves as input to the fault-diagnosis system 
that generates signals revealing knowledge about potential faults.
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Block diagram of a closed-loop controlled system with a plant subjected 
to modelling uncertainty, disturbances and faults. The closed-loop 
controlled system is augmented with a fault-diagnosis system generating 
residual signals ε. The information from the fault-diagnosis system may 
be fed back into the controller, e.g., for reconfiguration and self-healing.

Fault Diagnosis
System

3

6  nr 5 2023  



THEME – ENABLING PRECISION FARMING WITH THE AUTODL PLATFORM FOR AGRI-ROBOTS
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ALBERT VAN BREEMEN

Introduction
Recent advances in deep learning are transforming 
agriculture (Figure 1). By processing extensive data, agri-
robots recognise patterns and make precise decisions. 
Image recognition lets them differentiate between crops 
and weeds, optimising herbicide use and aiding disease 
prevention. They autonomously grade produce by size, 
colour and defects, and employ predictive analytics 
for improved navigation.

Agri-robots offer substantial benefits in farming. They 
diminish reliance on manual labour, leading to cost savings 
and uninterrupted operations. Their accuracy optimises 
seed, fertiliser, and pesticide use, boosting yields while 
reducing waste. Continuous monitoring facilitates early 
problem detection, supporting prompt interventions 
and informed decisions, especially in irrigation.

Agriculture’s complex visuals (Figure 2), from varied crops 
to disease patterns, challenge traditional computer vision, 
which often misreads these intricacies. In contrast, deep-
learning-based vision algorithms autonomously capture 

Deep learning is pivotal in modern agriculture, especially for advanced agri-robots. Using vast data, 
these robots discern patterns, optimising tasks from herbicide application to disease detection. 
However, their consistent performance hinges on a deep-learning system adept at agricultural 
complexities. This article explores challenges in crafting such systems, touching on economic impacts 
and design trade-offs. The AutoDL Platform is introduced, which is a solution for merging data & model 
management, task automation, and application insights. 

these details with superior precision, underpinning 
the advanced features of modern agri-robots.

However, deep-learning models are perpetually evolving. 
As fresh data surfaces and scenarios shift, models require 
updates to stay relevant. The ever-changing tech landscape 
and varying application needs drive these adjustments. 
Thus, a deep-learning operations platform is crucial, 
managing a model’s lifecycle from training to monitoring, 
ensuring sustained peak performance. However, achieving 
this peak performance is not straightforward; there are 
numerous challenges and considerations to account for, 
as will be explored below.

Economics of agri-robots
A basic economic model might help in understanding 
the intricacies of deep learning for agri-robots (Figure 3). 
To understand this model, envision a field with M objects 
ready for harvest. The agri-robot mainly consists of two parts: 
the visual detection system and the mechanical harvesting 
apparatus. In the model, if the visual system detects an object, 

1a 1b 1c

Applications of deep learning in agriculture.
(a) Agri-robots.
(b) Intelligent monitoring.
(c) Greenhouse automation.
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the mechanical harvester acts with h [%] ‘success rate’. There 
is also a ‘visibility factor’ v [%], the ratio between the total 
number of objects in the field M and those visible in the 
image N. This factor can be enhanced by tweaking camera 
angles or using mechanisms to provide an unobstructed view. 

Detection systems are not infallible. Given N actual objects 
visible in the image and P predictions, the outcomes might be:
• true positive (TP): the system correctly detects an object;
• false negative (FN): the system misses an object;
•  false positive (FP): the system inaccurately detects a non-

existent object. 

Here, TP + FN = N = vM and TP + FP = P. 

This rudimentary economic model for agri-robots centres 
on two aspects. Firstly, unharvested crops result from 
missed detections (e.g., false negatives). Secondly, needless 
harvester activations, stemming from false detections where 
no actual object exists (e.g., false positives). The maximum 
revenue and nominal cost are defined by:

  Revenuemax = M · p

  Costnominal = (M / A) · c

Here, A [actions/hour] is the harvester throughput, c [€/hour] 
is the cost per machine hour, and p [€/obj] is the price per 
harvested object.

Depending on object visibility, harvester success rate 
and detection failure, the actual revenue and cost will be:

 
 Revenue = M · v · [TP / (FN + TP )] · h · p

   = v · TPR · h · Revenuemax

  Cost  = [(TP + FP) / A ] · c

   = [(TP + FP) / (M · v) ] · v · Costnominal

   = [(TP + FP) / (FN + TP) ] · v · Costnominal

   = (TPR + FPR) · v · Costnominal

Here, TPR is the true positive rate (or recall), and FPR 
is the false positive rate (or false alarm rate).

From this model, it is evident that even a slight decrease in 
the TPR can dent farmer profits. For example, a TPR of 95% 
means 5% of potential harvest is overlooked. Moreover, every 
inaccurate detection diminishes efficiency. For example, if for 
every accurate detection there is an inaccurate one, the robot’s 
harvest efficiency drops by half. In agriculture, a mere 5% dip 
in yield or profit is already impactful. 

This underscores the high accuracy requirements of agri-
robot visual systems. In specialised tasks such as leaf 
cutting, where incorrect detections risk damaging a plant’s 
main stem, precision requirements can reach a remarkable 
99.9997% (which equals cutting 5 main stems in a 6-months 
season @ 1000 leaves/hour, 8 hours/day), underscoring 
the demanding nature of developing robust deep-learning 
solutions.

Design trade-offs
Deep-learning model development involves a complex, 
iterative optimisation process (Figure 4), as the efficacy 
of a model is deeply influenced by its architecture and 
the dataset it is trained on.

Typical visual agriculture scenarios.
(a)  Count the number of strawberries and estimate their ripeness.
(b)  Differentiate between main stem and leaf stem of cucumber plant for a leaf-cutting robot.
(c) Count number of blue berries.
(d) Detect and locate asparagus just growing above ground.

2a2a

2c

2b

2d

Main factors impacting system performance:
1)  Object visibility v and camera properties limit the actual number of objects visible on image.
2) Detection systems are never perfect.
3) Mechanical harvester actions are for h [%] successful.
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