
MIKRONIEK IS A PUBLICATION OF THE DUTCH SOCIETY FOR PRECISION ENGINEERING – WWW.DSPE.NL

PROFESSIONAL JOURNAL ON PRECISION ENGINEERING2023 (VOL. 63) ISSUE 3

  THEME: MODEL-BASED SYSTEMS ENGINEERING 
  BRIDGING THE GAP BETWEEN REQUIREMENTS ENGINEERING AND SYSTEMS ARCHITECTING
  CALCULATING THE TOTAL STIFFNESS OF COMBINED SPRINGS
  DSPE CONFERENCE ON PRECISION MECHATRONICS 2023 PREVIEW



ISSUE 3 2023

IN THIS ISSUEPUBLICATION INFORMATION

Objective
Professional journal on precision engineering and the 
official organ of DSPE, the Dutch Society for Precision 
Engineering. Mikroniek provides current information 
about scientific, technical and business developments 
in the fields of precision engineering, mechatronics 
and optics. The journal is read by researchers and 
professionals in charge of the development and 
realisation of advanced precision machinery.

Publisher
DSPE
Julie van Stiphout
High Tech Campus 1, 5656 AE Eindhoven
PO Box 80036, 5600 JW Eindhoven
info@dspe.nl, www.dspe.nl

Editorial board
Prof.dr.ir. Just Herder (chairman, Delft University 
of Technology),  
Servaas Bank (VDL ETG), B.Sc.,
Maarten Dekker, M.Sc. (Philips), 
Otte Haitsma, M.Sc. (Demcon), 
dr.ir. Jan de Jong (University of Twente),   
Erik Manders, M.Sc. (Philips Engineering Solutions),
dr.ir. Pieter Nuij (MaDyCon),  
dr.ir. Ioannis Proimadis (VDL ETG), 
Maurice Teuwen, M.Sc. (Janssen Precision Engineering)

Editor
Hans van Eerden, hans.vaneerden@dspe.nl

Advertising canvasser
Gerrit Kulsdom, Sales & Services
+31 (0)229 – 211 211, gerrit@salesandservices.nl

Design and realisation
Drukkerij Snep, Eindhoven
+31 (0)40 – 251 99 29, info@snep.nl 

Subscription
Mikroniek is for DSPE members only. 
DSPE membership is open to institutes, companies, 
self-employed professionals and private persons, 
and starts at € 80.00 (excl. VAT) per year.

Mikroniek appears six times a year.
© Nothing from this publication may be reproduced 
or copied without the express permission of the 
publisher.

ISSN 0026-3699

Thermal loads
Thermal (Ansys)
Temperature

Structural loads
Temperature
Structural (Ansys)
Displacements
Stresses

Temperature
dn/dT (Sigfit)
Zernike coeff.

Displacements
RB and SD (Sigfit)
Zernike coeff.

Stresses
dn/ds (Sigfit)
Zernike coeff.

Zernike coeff.
OPD (Zemax)
Wavefront error
Physical optics

Zernike coeff.
OPD (Zemax)
Wavefront error
Physical optics

Zernike coeff.
OPD (Zemax)
Wavefront error
Physical optics

27

46

The cover image (the second decomposition 
level of a component-function multi-
domain-matrix) is courtesy of Ratio. 
Read the article on page 5 ff.

FEATURES

04	 EDITORIAL
Gerrit Muller, professor of 
Systems Engineering in Norway 
and senior research fellow 
at TNO-ESI, on complexity 
and interoperability challenges 
in systems engineering.

45	 TAPPING INTO A NEW DSPE 
MEMBER’S EXPERTISE

ACS Motion Control – high-
performance OEM motion-
control system solutions

51	 DSPE
Including: Volunteer in the 
spotlight, Marc Vermeulen.

53	 UPCOMING EVENTS
Including: DSPE Knowledge Day 
Cryogenics.

54	 ECP2 COURSE CALENDAR
Overview of European Certified 
Precision Engineering courses.

55	 NEWS
Including: Piet van Rens, doyen 
of Dutch design principles, 
retires.

THEME: MODEL-BASED SYSTEMS 
ENGINEERING

05
Bridging the gap between requirements 
engineering and systems architecting 
To support the transition from document-driven 
to model-based systems engineering, the open-source 
Elephant Specification Language (ESL) has been 
developed, for writing highly structured system 
specifications from which system architecture models 
are automatically derived. 

10
Mathematical approach of high-tech systems 
design
Axiomatic Design enables the creation of good 
system designs by improving the causality of 
system functionality, their physical realisation, 
and manufacturing processes. 

16
System behaviour prediction by modelling 
and simulation
Rationale for model-based systems engineering.

24
Comprehensive Systems Engineering Education 
Laying the foundation for the Dutch approach.

27
‘STOP’ to optimise performance
Predicting optical system performance requires the 
integration of separate analyses, known as Structural, 
Thermal, Optical Performance – STOP. 

32
Design Principles – Calculating the total stiffness 
of combined springs 
Multi-DoF systems with multiple stiffnesses can show 
both series and parallel behaviour. 

38
Event preview – DSPE Conference on Precision 
Mechatronics 2023
The theme of this fifth edition is ‘Rethinking the system’ 
and registration is still open.

46
Design & Realisation – Cryogenic active vibration 
isolator
A compact and lightweight one-DoF module which is 
meant to be integrated into a multi-DoF isolation solution.

nr 3 2023 MIKRONIEK  3



EDITORIAL

4  MIKRONIEK nr 3 2023

All my different sub-persons come across the term MBSE (model-based systems engineering): associate 
editor of Systems Engineering, fellow of INCOSE, professor in Norway, and researcher at ESI (TNO). 
These encounters have several different patterns:
•	 A large group of MBSE “advocates” look particularly concerned if a diagram does not use SysML.
•	� A large group of executives and developers hear the term and are afraid of missing out on something 

important.
•	 A group of older (?) professionals are disturbed by SysML and the high level of hype.

So, it is high time to bring some light into the darkness. Let’s state some facts. The first simple fact is that 
for decades we have benefited from a wide range of digital tools for almost all our engineering work, such as 
requirements, configuration, and version management, software development tools, CAD-E, CAD-M, PLM, 
ERP, and the alphabet soup can go on for a long time. All those tools need a formalism and a representation to 
work. The result of engineering is that we create the technical production documentation, which is practically 
completely digital and largely formalised. Can anyone imagine developing a top-of-the line Intel CPU without 
extensive digital support?

Today’s pain in developing complex systems is in various dimensions. A rather mundane problem is that 
although most information is digital somewhere, many steps in the entire development and product lifecycle 
require “manual” interventions; interoperability between many of the tools is still problematic. Part of the 
interoperability challenge is that many digital artifacts (models?) are discipline-oriented. How will all these 
artifacts form an integral, fluent solution? There is a clear need for integrating technology (with its formalism 
and representations) that streamlines the entire lifecycle.

A second fact is that complexity of the problem space causes another pain. Many systems that we make 
have a wide variety of stakeholders with an even wider range of needs and interests. These needs and interests 
go beyond technology, e.g. political, economic, social, environmental, and legal considerations are at play. 
Domain knowledge (defence, transportation, healthcare, etc.) plays a big role. The heterogeneity of 
stakeholders and considerations, in combination with ambiguity and fluidity of human interaction, requires 
communication, cooperation, influencing, and many other “soft” skills. This part of the pain is ill-served 
with formalism; it requires a broad spectrum of representations used in social interaction.

Our challenge is that we have to resolve both pains, in a way that both worlds function together. The digital 
interoperability will need something MBSE-like. Critical thinkers wonder whether the current SysML is 
a proper fit; that discussion goes beyond an editorial. The problem space complexity and the stakeholder 
interaction require a completely different paradigm of communication and visualisation, which I call 
conceptual modelling. Lastly, we need a way of working that is connecting both paradigms, continuously, 
from conception until decommissioning. This way of working is systems engineering.

Gerrit Muller
Professor of Systems Engineering, University of South-Eastern Norway,  
and senior research fellow, Embedded Systems Innovations by TNO
gerrit.muller@gmail.com, www.gaudisite.nl

WHY IS EVERYONE TALKING ABOUT 
MBSE ANYWAY?



THEME – TRANSITION FROM DOCUMENT-DRIVEN TO MODEL-BASED SYSTEMS ENGINEERING

BRIDGING THE GAP 
BETWEEN REQUIREMENTS 
ENGINEERING AND 
SYSTEMS ARCHITECTING 

AUTHOR’S NOTE

Tim Wilschut is a co-founder 
of Ratio Computer Aided 
Systems Engineering, 
located in Eindhoven (NL), 
and hybrid lecturer at 
Eindhoven University 
of Technology (TU/e). 
He studied Mechanical 
Engineering at TU/e, where 
he also obtained his Ph.D.; 
his thesis was titled “System 
specification and design 
structuring methods for a 
lock product platform” [1]. 
Building on this work and the 
collaboration with the TU/e 
High-Tech Systems Center, 
Ratio develops systems 
engineering methods and 
tools. Wilschut does so 
together with Ratio’s 
other co-founder, Tiemen 
Schuijbroek, since 2018, 
when they had finished 
their Ph.D. and M.Sc. thesis, 
respectively.

t.wilschut@ratio-case.nl
t.j.l.schuijbroek@ratio-case.nl

TIM WILSCHUT

Introduction
In recent years, several methods and software tools have 
emerged to support the transition from document-driven 
systems engineering to model-based systems engineering. 
Though being an improvement from fully document-driven 
engineering, these methods and tools bring along several 
practical challenges. 

Firstly, most of these methods and tools work like databases 
in which pieces of information, such as requirements, are 
manually labelled and linked to other pieces of information, 
such as elements of the product breakdown structure (PBS), 
to keep track of all the information (i.e. what relates 
to what) that is being produced during the course of 
a development project. This manual labelling and linking 
of requirements to breakdown structure elements results 
in a heavy administrative workload for systems engineers 
and architects. 

With stringent deadlines it cannot be avoided that corners 
are cut here and there. Moreover, to create these links one 
requires a deep understanding and an overview of the entire 
system. As the complexity of systems has been increasing 
in recent decades, it is impossible for a person to have 
such a complete understanding and overview. Moreover, 
continuous development and many unknowns complicate 
matters even further. 

New methods and software tools have been designed to support the transition 
from document-driven to model-based systems engineering. Though bringing 
improvements, these methods and tools bring along several practical challenges. 
To resolve the issues, Ratio Computer Aided Systems Engineering continues the 
development of the open-source Elephant Specification Language (ESL), for which 
the foundations were laid at Eindhoven University of Technology. ESL is a language 
to write highly structured system specifications from which system architecture models 
are automatically derived. It has been designed from an engineering perspective 
rather than an information management perspective, with the ultimate goal of 
bridging the gap between requirements engineering and systems architecting.

Secondly, the quality and consistency in labelling and linking 
completely relies on ‘good behaviour’ of those who create the 
labels and links. There are no means to, for example, formally 
check whether a requirement really relates to the elements 
it has been linked to. Instead, one usually resorts to expert 
reviews, which quickly lead to lengthy discussions.

Ratio

Ratio Computer Aided Systems Engineering is a company 
that specialises in the development of methods and tools 
for requirements engineering and the modelling, analysis, 
and design of system architectures and product portfolios. 
Ratio has experience with modelling and analysing a wide 
variety of systems, ranging from locks and bridges to 
nuclear fusion power plants. Recently, Ratio set up a 
partnership with Quootz to allow customers to directly 
apply Ratio’s product-portfolio 
analysis methods within 
the Quootz product  
configurator software. 

 WWW.RATIO-CASE.NL 
 WWW.QUOOTZ.NL 

nr 3 2023 MIKRONIEK  5



THEME – TRANSITION FROM DOCUMENT-DRIVEN TO MODEL-BASED SYSTEMS ENGINEERING

Thirdly, most tools focus on information management, not 
on the quality of the information being managed. As such, 
these tools simplify the management of large volumes of 
information. The information itself, however, may be just 
as vague and ambiguous as in a fully document-driven 
approach. 
These combined challenges often result in a linking 
structure that is inconsistent and incomplete, does not 
provide a model of the systems architecture, and therefore 
has little value in everyday engineering practice. 

Therefore, systems engineers and architects often resort 
to graphical modelling tools to create systems architecture 
models manually. In turn, these models must be kept up-to-
date and consistent across the board as well as with their 
related requirement specifications, which increases the 
administrative workload even further and results in a gap 
between requirements engineering and systems architecting. 

Six blind men and the elephant 
When creating systems architecture models, systems 
engineers and architects will often find themselves in 
lengthy discussions on what the systems architecture really 
is. These discussions often resemble the parable of the six 
blind men that went to see an elephant. As the story goes, 
they explored the elephant by touch and disputed long and 
loud about what an elephant is, until the prince came out. 
“Be quiet now,” he said, “because you are all in the right 
and you are all in the wrong.” In real life, however, there 
is usually no prince to be found.

To resolve these issues, the open-source Elephant 
Specification Language (ESL) [1] [2] was created. ESL is 
a simple, highly structured formal language for defining 
a PBS and all functional, behavioural, and design 
requirements in a consistent and concise manner. As it 
is natural-language-based, it is readable by any engineer. 
Yet, it is sufficiently structured to allow the ESL compiler 
to automatically derive dependencies (links) between 
functional requirements, behavioural requirements, 
design requirements, and elements of the PBS based on 
mathematical rules. This network of dependencies defines 
the systems architecture. 

Automated dependency derivation reduces the risk 
of human error drastically as dependencies cannot be 
forgotten. Moreover, it reduces the human workload 
tremendously. For example, at the Dutch Institute For 
Fundamental Energy Research (DIFFER) [3], ESL is being 
used to create the conceptual design of a pulsed-laser-
deposition research cluster. At the time of writing, the 
research cluster specification defines a PBS comprising 
three layers containing 161 elements. These elements are 
subject to nearly a thousand requirements between which 

over 13,000 dependencies are automatically derived in less 
than a second, which allows for efficient systems-
architecting modelling and analysis. 

The text-based format allows one to easily manage ESL 
files using version control software such as Git and SVN, 
which has been used for change management in software 
development for decades. 

A break with convention
ESL has been designed from an engineering perspective 
rather than an information management perspective. In 
other words, it has been designed to aid systems engineers 
and architects in designing the system by allowing one to 
automatically generate systems architecture models from 
the requirement specifications. Perhaps counterintuitively, 
it therefore deliberately deviates from several classical 
systems engineering concepts. 

One decomposition to rule them all
Firstly, in classical systems engineering it is often advocated 
to use separate system, function, and requirement 
decomposition trees of which the elements are linked to 
another. In practice, however, systems engineers will often 
experience that it is very hard to create separate function 
and requirement trees and that when they manage to do so 
these structures provide little value in designing the actual 
system. If you have ever found yourself jumping through 
near poetic hoops to describe the function of something as 
simple as a button without being allowed to call it a button, 
you will be glad to leave these discussions behind. 

The reason for this is quite clear; in practice it is often simply 
impossible to create separate function and requirement trees 
[4]. For example, the function ‘measure temperature’ might 
contribute to the functions ‘control position’ and ‘control 
temperature’. Consequently, it is impossible to assign a single 
‘parent function’ to the function ‘measure temperature’. 
This also holds for requirements. 

Moreover, many functions and requirements originate 
from design decisions rather than other functions and 
requirements. For example, if one decides that an actuator 
is to be a hydraulic actuator, the functions ‘filter oil’, ‘store 
oil’, ‘pump oil’ and requirements with respect to the type 
of oil appear. While choosing a spindle actuator would yield 
a completely different set of functions and requirements. 

Hence, ESL only requires one to define the product 
decomposition (= PBS). All functions and requirements 
are formulated in terms of flows between PBS elements 
and properties of PBS elements. Dependencies between 
the functions, requirements, flows, properties and PBS 
elements are automatically derived by the ESL compiler. 

6  MIKRONIEK nr 3 2023



THEME – MATHEMATICAL APPROACH OF HIGH-TECH SYSTEMS DESIGN

AXIOMATIC DESIGN

AUTHORS’ NOTE

Erik Puik is professor of 
Smart Manufacturing at 
Fontys University of Applied 
Sciences in Eindhoven (NL).  
Rik Lafeber is researcher 
Microsystem Technology 
and lecturer Mechanical 
Engineering at HU University 
of Applied Sciences in 
Utrecht (NL).

erik.puik@fontys.nl
www.fontys.nl
www.hu.nl

ERIK PUIK AND RIK LAFEBER

Introduction
Axiomatic Design (AD) is a concept developed to address 
the challenges that arise during the design phase in the 
development of complex systems. The method was 
developed by Nam P. Suh of the Massachusetts Institute 
of Technology (MIT) in the second half of the 1970s [1]. 
AD declares ‘Axioms’ that cannot be proved or deduced 
from physical phenomena, which gives the method its 
name. Initially, a number of six design Axioms were 
defined. Two of the Axioms have stood the test of time, the 
others appeared to be corollaries of these two. Since then, 
the methodology has centred around two primary axioms:
•  �The first axiom, the ‘Independence Axiom’, directs the 

designer to ensure that the functional requirements 
are independent. This means that each functional 
requirement should be determined, commonly referred 
to as ‘satisfied’, by a specific design parameter and 
not influenced by others. The advantage of such 
independence is that changes to one design parameter 
should not interfere with multiple other functions. 
Consequently, the design is more robust, easier to control 
and improve, and less prone to unexpected outcomes.

•  �The second axiom, the ‘Information axiom’, encourages 
minimising the information content of the design. 

Axiomatic Design (AD) is a systems engineering methodology that enables the creation 
of good system designs by improving the causality of system functionality, the system’s  
physical realisation, and manufacturing processes. This is done by using mathematical 
principles that describe independence between these elements. AD contributes to a 
better understanding of main and alternative design options. Its applications extend 
across various industries, from mechanical engineering to (bio)medical systems and 
even social systems. AD is particularly suitable for addressing problems in high-tech 
systems development. This article outlines what AD is and how it can be applied.

Essentially, the design should be as simple and clear as 
possible. As few steps or parameters as possible should 
be required to move from function to physical solution.

The application of the Axioms contributes to a structured 
design process, reduces complexity and promotes 
robustness. It provides a rational basis for design choices 
and improves communication between team members 
using the formalised methodology. This introduction to 
AD focuses on how system requirements are decomposed 
in AD. To do this, the Independence Axion is applied. The 
Information Axiom will be described in a future article.

Organizing Domains
AD provides a systematic method of translating functional 
needs into functional design, reducing reliance on intuition 
or guesswork in the design process. This systematic 
approach creates a clear roadmap, starting with identifying 
functional requirements, fulfilling these requirements 
through design parameters, and finally representing 
these parameters in process variables.

AD demands clear formulation of design objectives 
through the establishment of ‘Domains’:
•  �functional domains, containing the Functional 

Requirements, from now on to be called FRs;
•  �physical domains, containing the Design Parameters, 

or DPs;
•  �process domains, containing the Process Variables, or PVs.

The domains are hierarchically decomposed as shown 
in Figure 1.

According to the definition in AD, the Independence Axiom 
advises to “Maintain the independence of the functional 
requirements”. AD also explains how this can be done 
from a mathematical perspective, as shown in Figure 2.

Axiomatic Domains and their hierarchical organisation.

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

1

10  MIKRONIEK nr 3 2023



Process 
Domain

Process
Variables

PV1
PV2
PV3
PVn

Physical 
Domain

Design
Parameters

DP1
DP2
DP3
DPn

Functional 
Domain

Functional 
Requirements

FR1
FR2
FR3
FRn

Product
Design

=  [A]  ·

Process
Design

=  [B]  ·

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

Zig

Zag

Etc

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

Zig

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Zag

The domains, in which functional requirements (FRs), 
design parameters (DPs), and process variables (PVs) are 
represented as vectors, are interrelated with design matrices. 
The design equations according to good AD practice 
are defined as:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

Here, [A] and [B] are the product and process design 
matrices, respectively. If a product design has three FRs, 
DPs, and PVs, the product design matrix [A] and the 
process design matrix [B] have the following form:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

The design equation for the FRs is then defined as follows:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

Here, FR1 to FR3 are three functional requirements and 
DP1 to DP3 are three relevant design parameters. In this 
representation, a ‘good design’ would be an ‘uncoupled’ 
or a ‘decoupled’ one if the matrix is diagonal or triangular, 
respectively, as shown below:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

	 (uncoupled)

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

	 (decoupled)

Here, the X-es indicate non-zero elements of the matrix 
and as such indicate a relation between the associated DPs 
and the FRs. In an uncoupled design, every FR is related 
to a single DP, while in a decoupled design, it may be related 
to more than a single DP, but if the right order is applied 

to adjust the FRs with the DPs, all FRs can be tuned 
sequentially. In AD, this design matrix takes a central place 
because it defines the structure and as such the behaviour 
of the design.

The design equation for the FRs does not yet include 
the relation to the manufacturability of the physical system. 
This is where the process design matrix [B] is applied:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

The full design equation, which correlates the process 
variables with the functional requirements, then has this form:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 A caveat must be made here that only a limited number of 

system designs are sufficiently well understood in practice to 
successfully apply this equation. The examples in this article 
are therefore limited to the translation from DPs to FRs.

The process of zigzagging
To check that all FRs are satisfied by their DPs and 
subsequently the DPs are satisfied by their PVs, AD uses 
a procedure called ‘zigzagging’. Zigzagging is a top-down 
descent through the design hierarchy, covering all domains 
sequentially. At each level, it is checked whether the FRs 
and DPs are satisfied before going down to the next level, 
as shown in Figure 3.

The process of zigzagging is always performed from the left- 
to the right-hand side. Zigzagging covers all domains. 
Successful completion of the zigzagging process will lead 
to an uncoupled or a decoupled design matrix and satisfies 
the Independence Axiom, which completes the conceptual 

Axiomatic Domains and their relations.

The process of hierarchically zigzagging through the domains.

3

2

nr 3 2023 MIKRONIEK  11


