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Introduction
The economic value of high-tech production equipment 
is largely determined by its productivity, which is, in turn, 
heavily related to its uptime. Without maintenance, it is not 
a question whether a machine will fail, but rather when it will 
fail. Unexpected failure often results in downtime, leading to 
a severe loss of productivity. These unexpected breakdowns 
can be attributed to various factors, such as defects, the ageing 
of system components, and wear and tear, among others. 

Ideally, critical faults are detected in an early stage and handled 
such that downtime is minimised. Traditionally, faults have been 
addressed through preventive maintenance strategies or reactive 
responses. In sharp contrast to these traditional approaches, 
predictive maintenance offers a way to further minimise equipment 
downtime [1,2]; see Figure 1. This is achieved by detecting faults 
within the equipment and precisely pinpointing their origin, 
a process known as fault detection and isolation (FDI) [3,4].

Digital twins are increasingly being developed for industrial 
high-tech systems [5-8]. In sharp contrast to the popularity that 
artificial intelligence (AI) based solutions for fault diagnosis 

Digital twins are increasingly being developed for industrial high-tech systems. In this 
article, we outline the exciting opportunities that digital twins have to offer for fault 
diagnosis, predictive maintenance, and controller reconfiguration. The proposed solutions 
increase economic value by minimising downtime through nonintrusive diagnostics.

have gained [9-11], we argue that model-based approaches 
should form the core foundation of digital twins for FDI in 
high-tech systems [12]. Typically, models of the system have 
been created prior to commissioning a machine. These models 
range in complexity from simple first-principles modelling 
to data-enriched finite-element modelling (FEM), or they 
can be identified during the system integration phase. 
These models, developed during the machine’s design and 
integration phases, are at the heart of digital twins for FDI and 
constitute a system of interconnected systems. Despite the trend 
towards more AI-based solutions, we argue that the building 
blocks for digital twins for fault diagnosis were readily available 
far before the digital twin concept gained prominence in 
the early 2000s [13].

Surprisingly, after system integration and controller design, 
the developed models are often left unused. In sharp contrast, 
we propose to repurpose these models, since these models 
have a predictive power and can be harnessed in the form 
of a digital counterpart that is continuously informed with 
real-time data through already existing sensors and actuators. 

Illustration of three different methods to perform maintenance. Responding reactively leads to unexpected downtime and typically a long repair time. Preventive strategies lead to more 
interruptions than strictly necessary. Predictive maintenance is preferred as it exploits data and models to anticipate and prevent equipment failures, improving overall operational efficiency.
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Properly designed digital counterparts have the capability 
to accurately predict the behaviour of the machine. 
Consequently, detection of an increasing mismatch between 
the model and the machine can indicate an upcoming failure. 
This yields the opportunity for scheduled instead of 
unscheduled service actions. As such, they provide major 
opportunities for enhancing uptime [12] [V1].

As the demand for higher performance increases, machines 
are evolving into more intricate systems. Their complexity 
becomes apparent through the increasing presence of actuators, 
sensors and components, which, in turn, generates a vast 
volume of data that can be harnessed for multiple purposes. 
Firstly, this data can be used to enhance the predictive 
capability of the digital counterpart. Secondly, the data can be 
used for monitoring and detection of anomalies. Moreover, 
after successful detection additional actuators and sensors 
might allow addressing the fault through effective self-healing. 

For instance, by reallocating the control effort among the 
remaining healthy actuators, so-called control reconfiguration.

As opposed to the opportunities arising from the abundance 
of actuators and sensors, this article also highlights several 
challenges that come with the growing complexity of systems 
in the context of fault diagnosis. Firstly, the increasing number 
of components gives rise to a greater number of potential 
fault scenarios, complicating the task to isolate the root cause. 
Secondly, for successful fault detection, it must be guaranteed 
that faults are distinguished from external disturbances, 
inherently present in any system, while simultaneously 
accounting for uncertainty in the system model. Thirdly, 
feedback controllers in mechatronic systems are designed to 
minimise the effects of disturbances and anomalies, making 
fault detection more difficult [14]. At the same time, faults in 
closed-loop controlled systems may be particularly hazardous 
as these affect machine performance and stability margins [15].

In this article, we first show the basic functionality of a 
model-based fault-diagnosis system and illustrate how to 
exploit the available models for basic FDI filter design. Sub-
sequently, we illustrate how to give robustness guarantees 
and demonstrate the estimation of changing system 
dynamics. Finally, it is shown how to exploit fault information 
to enhance uptime through control reconfiguration. 

Model-based fault-diagnosis system
Every fault-diagnosis system relies on data sourced from 
the system, such as actuator, controller and sensor data. 
This data can be processed offline, but also online during 
normal production. Fault-diagnosis systems processing this 
data can be designed in different ways [16-19], including 
data analyses, and machine-learning algorithms. 

Model-based approaches acquire and process the data 
concurrently with the control algorithm and thus in real time, 
as schematically depicted in Figure 2. The output of the fault-
diagnosis system is a signal or data stream that aids in identifying 
the presence of faults or anomalies within the system. 
Analysing these specifically designed signals helps diagnose 
and locate the specific fault in the system. So, summarising, 
faults that are difficult to detect directly in original data 
sources and/or suppressed by a feedback control loop will 
become visible in the output of the fault-diagnosis system.

In contrast to offline data processing, a significant 
advantage of online methods, such as model-based 
methods, is their ability to enable nearly instantaneous 
fault detection. One potential drawback of model-based 
approaches lies in their reliance on the accuracy of 
the underlying model. Fortunately, when it comes to 
mechatronic systems, precise models are readily available 
even before a machine is commissioned. The complexity of 

Schematic overview of a closed-loop controlled mechatronic system 
subjected to faults and disturbances. Data is extracted from the 
controlled system, which serves as input to the fault-diagnosis system 
that generates signals revealing knowledge about potential faults.
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Block diagram of a closed-loop controlled system with a plant subjected 
to modelling uncertainty, disturbances and faults. The closed-loop 
controlled system is augmented with a fault-diagnosis system generating 
residual signals ε. The information from the fault-diagnosis system may 
be fed back into the controller, e.g., for reconfiguration and self-healing.

Fault Diagnosis
System

3

6  nr 5 2023  



the required model depends on the specifics of the faults. 
The most precise models are identified using experimental 
data, ideally accompanied by a certificate of accuracy. For 
other faults, even first-principle models provide sufficient 
accuracy for diagnostics.

The mathematical descriptions of these models are especially 
useful when they accurately encapsulate the system’s relevant 
physical behaviour in an interpretable manner. A high 
accuracy is important to detect small deviations caused 
by faults at an early stage, even before they lead to significant 
deviations in system behaviour. Early fault detection can 
prevent minor problems from escalating into major problems. 

The interpretability provides a profound understanding of how 
the system should behave under normal circumstances and 
proves to be invaluable for pinpointing the origin of anomalous 
behaviour, i.e., fault isolation, and quantifying its severity for 
closed-loop performance and stability. It is extremely valuable 
to isolate the specific component or subsystem responsible for 
a fault. Namely, this information directs service teams to the 
exact source of the problem, reducing diagnostic time and 
improving the accuracy of corrective actions.

Figure 3 shows a typical block diagram for the design and 
synthesis of model-based fault-diagnosis systems. The plant 
model of the plant is denoted by 
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, which is a  
linear fractional transformation of a nominal model Gu 
and corresponding modelling uncertainty Δ. The feedback 
controller is denoted by C. Without loss of generality, the 
control algorithm can be extended with, e.g., a feedforward 
filter. Disturbances are inherently present in any control loop 
and are denoted by d. Disturbances may be coloured. For 
example, the sensor noise may have a specific frequency 
spectrum. This is modelled through the filter Gd.

Faults are often categorised into two parts [3], namely 
additive contributions fadd, modelled by the filter Gf , and 
parametric contributions fpar, also referred to as multiplicative 
faults. Sensor bias and drift, bearing wear or load variations, 
are examples of additive faults. Amplifier degradation and 
shifting resonance dynamics are examples of parametric 
faults. Depending on the nature of the fault, an appropriate 
fault-diagnosis strategy must be selected. The control 
input u, the output y, including effects from d, fadd, and fpar, 
and possibly the reference signal r, are fed into the fault-
diagnosis system. How these models are used for a basic 
fault-diagnosis system design is described in detail below.

Fault detection and isolation
As mentioned, faults may be modelled as additive contributions; 
see Figure 3. In practise, many faults can be represented 
or approximated by additive contributions, making this 
a reasonable fault representation in many engineering 

applications. Modelling faults as additive contributions 
is attractive due to the mathematical simplicity and the 
alignment with linear system theory. This makes it easier to 
integrate fault detection, isolation and control into existing 
linear and numerically reliable frameworks for larger-scale 
systems. First, a basic design strategy is illustrated [18,19], 
followed by a case study on a prototype wafer stage.

Consider Figure 3 without multiplicative faults fpar and without 
modelling uncertainty Δ. A fault-diagnosis system to detect 
and isolate additive faults consists of a stable linear time-
invariant residual generator, 
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The aim is to design the filter Q such that:
 1. Ru = 0;
 2. Rd ≈ 0;
 3. Rf ≠ 0 and is structured.

The first objective, Ru = 0, aims to decouple the effect of the 
control input in the residual. The second objective, Rd ≈ 0, aims 
to have a minimal effect of disturbances. With the imposed 
structure on Rf , effective fault isolation can be achieved. 
Structured residuals can be achieved by redistributing a distinct 
subset of faults as disturbances for every row in Qy and Qu. 

A residual generator is typically synthesised in a few sequential 
steps [19]. Two steps are illustrated next. To accomplish Ru = 0, 
we define Qy = Q2Qy1 and Qu = Q2Qu1. Hence, to achieve
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we can take the immediate solution Qy1 = I, Qu1 = –Gu, 
or alternatively take a so-called left coprime factorisation 
of Gu as a solution.

Subsequently Q2 is used for fault-to-disturbance optimisation 
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is enforced, and (∙) implies nonzero transfer functions. 
An experiment was conducted where the 17 faults were 
artificially triggered by introducing signals fi . In Figure 7, 
the first four residuals εi are shown, where the different 
faults can be clearly distinguished using the enforced 
structure above. For example, during the first seconds ε1  
is zero while the other signals are triggered, concluding 
that the first fault is occurring, which in this case is 
actuator 1.

THEME – OPPORTUNITIES OF DIGITAL TWINS FOR HIGH-TECH SYSTEMS

Simply stated, maximise the sensitivity to faults and 
simultaneously minimise the sensitivity to disturbances. 
A higher ratio between these sensitivities allows for earlier 
detection of faults. This optimisation step can be solved 

efficiently using a Ricatti equation [21,22].
The following case study illustrates a fault detection and 
isolation filter that allows to detect and isolate 17 distinct 
potential faults in a prototype wafer stage. 

The overactuated test-rig 
(OAT) is a prototype 
lightweight motion stage 
that can be positioned in all 
six degrees of freedom. The 
stage is levitated with four 
gravitation compensators in 
the corners and contains four 

sensors to measure the position in z-direction; see Figure 4. The 
position is measured using linear incremental encoders with a 
resolution of 1 nm. The stage is actuated by Lorentz actuators, 
of which 13 actuate in the z-direction; see Figure 5.

For this case study, it was assumed that all sensors and 
actuators in z-direction are prone to faults and as a result may 
malfunction. To detect and isolate these 17 distinct faults, a 
fault-diagnosis system has been designed. First, a frequency 
response measurement was conducted on the fault-free 
system and a 30th-order modal Gu(s) model was estimated; 
see Figure 6 for a snapshot of the first four inputs.

Based on this model, a residual generator, [Qy Qu], was 
synthesised following the method described in the section 
on fault detection and isolation, where a structure
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Prototype next-generation 
wafer stage with 13 
actuators and four sensors 
in z-direction, which are all 
prone to faults. The set-up 
is currently installed at the 
Mechanical Engineering 
department of Eindhoven 
University of Technology.

4

Bottom of the prototype wafer stage showing the 13 spatially 
distributed actuators and four gravitation compensators.

5

4 × 4 section of the 4 × 13 wafer-stage model. The nonparametric 
estimate (blue) and the parametric modal model (red), used for 
the fault diagnosis design, are depicted.
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Case study: Fault detection and isolation 
for a next-generation prototype wafer stage

Four of the 17 residual signals εi (left). The structure imposed on Rf is 
clearly visible, allowing to isolate the root cause of the anomalous 
behaviour. The faults are applied in the highlighted red regions. 
A digital representation of the counterpart is shown (right), 
where the red cross marks the faulty component in real-time.
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Robustness guarantees 
One of the major challenges in fault-diagnosis system design 
is that it should be able to distinguish faults from disturbances 
and modelling uncertainty. Disturbances are inherently 
present in any control system, e.g., sensor noise and external 
vibrations. The modelling uncertainty can be attributed to 
limited estimation accuracy, simplifications and assumptions, 
or system variability. It is widely recognised that a compromise 
is inevitable between robustness to these disturbances 
and model uncertainties, and sensitivity to faults. 

A framework to optimise the fault sensitivity despite 
disturbances has been presented in the previous section. 
This idea can be extended to account for the modelling 
uncertainty Δ. Recently, a H– /H∞ approach has been 
developed for models with an uncertain system 
representation, denoted by G(Δ), where the uncertainty Δ 
lies in a norm-bounded set Δ. This is exactly a model set 
that is often available for precision mechatronics, as it is 
considered in their control design.

Let us now consider the uncertain input-output relation:
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Similar to the design of Qy1 and Qu1 in the previous section, 
the control input, generated by the controller, is largely 
cancelled through factorising the nominal plant, i.e., 
Gu= Mu

–1 Nu. Hence, take Qy1 = Mu and Qu1 = –Nu. The 
remaining effect through modelling uncertainty can be 
incorporated in an augmented disturbance matrix 
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, while a 
similar Ricatti-based algorithm is solved to maximise the fault 
sensitivity, subjected to modelling uncertainty and disturbances. 

Figure 8 shows an example of the transfer functions from the 
augmented disturbances and faults to the residual, i.e., 
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and Rf , for realisations within the set of uncertain systems. 
It can be concluded that the effect of the disturbance and 
modelling uncertainty lies below the specified dashed line for 
all different uncertainty realisations and the worst-case fault 
sensitivity is quantified. This approach guarantees that 

the optimal filter truly detects faults and is invariant 
to disturbances and implications of a poor model. 

Parametric faults in closed-loop controlled systems 
Ageing-induced wear is a typical phenomenon that causes the 
system characteristics to change. Even slight changes in terms 
of stiffness or damping, that is, resonance characteristics, 
are key indicators of an increased risk of failure [15]. This is 
an example of a multiplicative fault fpar. First, the importance 
of detecting these faults is illustrated, followed by a case study.

Multiplicative faults are particularly dangerous for closed-
loop controlled systems, as the controller has often been 
designed without considering the effect of potential 
parametric faults fpar. Consider the block diagram in Figure 2, 
without additive faults, i.e., fadd = 0, and without modelling 
uncertainty, i.e., Δ = 0. In that case, the error signal is equal 
to:
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Here, the fault-dependent sensitivity function is:
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As a result, performance is directly affected by faults fpar. 
The feedback controller often contains dedicated notch filters 
to attenuate the effect of specific resonances. A slightly 
changing G due to fpar then not only will deteriorate 

Illustration of the responses from generalised disturbance 
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2

𝑛𝑛𝑠𝑠
𝑖𝑖=𝑛𝑛𝑟𝑟𝑟𝑟+1 . 

 
 
 
 

 (left) and fault f (right) to residual ε for all  
Δ є Δ. The transfer from generalised disturbance to residual is clearly bounded by the specified dashed line. 

8
Bode diagram of G(fpar  ) and Nyquist diagram of G(fpar  )C illustrating the 
effect of a parametric fault fpar affecting the stability margin. The gain and 
modulus margin have been drastically affected. The green area indicates 
the healthy state of the system. The red indicates a poor stability margin.

9
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the closed-loop performance, but also drastically affect 
traditional stability margins such as the modulus margin 
maxω|S(jω)|. An example of a spring characteristic 
changing due to a fault and its influence on stability margins 
is depicted in Figure 9. As illustrated in this example, 
monitoring changes in the system itself is highly desirable. 

To this end, inexpensive and online estimation algorithms 
are particularly useful [3]. However, off-the-shelf algorithms 
do not always provide the desired interpretability. For fault 
isolation in mechatronic applications, a newly developed 
and more interpretable algorithm is better suited, 
as illustrated by the following case study.

A forgetting factor 
λ(k) is used to give 
more weight to recent 
data while gradually 
reducing the influence 
of older data. To 
address bias in 
closed-loop estimation 
due to the correlation 
between d and u, 
so-called instrumental 
variables (IVs) are used.

An overactuated and 
oversensed flexible 
beam set-up was 
considered. Due to an 
additional actuator-
sensor pair, an 
artificial control loop 
was created, which 
allowed to artificially 
increase or decrease 
the stiffness and/or 
damping of the beam; 
see Figures 10 and 11. 
The internal damping 
and stiffness of the 
beam was 
manipulated during an experiment between t = 20 s and 
t = 80 s; the parameter estimates associated with the 
modes are shown in Figure 12, where the parameters 
in the left column relate to the first mode, i.e. B1 = b10 
and A1 = a12s2 + a11s + 1. Similarly, the parameters in the 
second column relate to the second mode with B2 = b20 
and A2 = a22s2 + a21s + 1. The changing second mode 
was indeed detected and estimated, illustrating 
the effectiveness of the proposed approach.

Mechanical systems are typically described as [23]:
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Here, nrb is the number of rigid-body modes and ns the total 
number of modes; the vectors ci , bi are associated with the 
mode shapes, and ζi , ωi are the damping ratio and natural 
frequency, respectively.

Typically, for single-input single-output systems, a single 
unfactored transfer function G(s) = B(s)/A(s) is estimated. 
However, we aim to estimate the dynamics in a modal 
decomposition:
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This is in sharp contrast to traditional methods, where 
interpretability is mostly lost. Here, we consider methods 
based on pseudolinear regression:
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1
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𝑇𝑇(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘 − 1)). 
 
 
 

Here, the regressor φ(tk , θ) contains filtered versions of the 
input-output data and its derivatives at time-sample tk. The 
estimated parameter vector of each mode, θi , directly relates 
to the gains, damping and resonance frequency associated 
with each modeshape, i.e., ci , bi , ζi and ωi , respectively.

To determine the parameters associated with each of 
the modes Gi(s) = Bi(s)/Ai(s) recursively and in real-time, 
we compute:
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 This is done at every tk for every mode i, where yi is an 

estimate of the modal contribution to the total output. 

Overactuated and oversensed flexible beam system. The beam 
is equipped with yellow tape and suspended with wire flexures. 
It is actuated with voice-coils (top) and the deflection is measured 
with fibre-optic sensors (bottom).

10

Frozen frequency response functions (FRFs) illustrating the shift 
of the internal dynamics of the system. This corresponds to a change 
in the second resonance peak.

11

Parameters associated with the first and second mode on the left 
and right, respectively.

12

Case study: Online estimation of modal 
models for mechanical systems
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Reconfiguration and self-healing
If a fault is successfully detected, or even better, an estimate 
of the fault is available, then this information can be used 
to reconfigure the controller and minimise or even fully 
mitigate performance loss [24]. This allows to significantly 
prolong uptime in the event of a fault. To this end, several 
approaches are envisioned [12] [V1], ranging from virtual 
sensors/actuators to adaptive modal decoupling. These 
methods allow for reallocation of the control inputs and mainly 
exploit redundancy in the number of sensors or actuators. This 
is illustrated on the prototype wafer stage in the next case study.

Conclusion and outlook
Model-based fault-diagnosis systems for high-tech systems 
are highly promising and have many benefits to offer in terms 
of predictive maintenance and controller reconfiguration. 
This is enabled by the readily available models in high-tech 
systems that can easily be repurposed. The recent theoretical 
advancements and practical case studies give a broad 
perspective on how these concepts can drive substantial 
enhancements in system uptime and hence productivity.
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Response of the OAT without (left) and with (right) controller 
reconfiguration. Without reconfiguration, the chuck starts 
to vibrate heavily. Reconfiguration mitigates this effect.
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