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Introduction
Recent advances in deep learning are transforming 
agriculture (Figure 1). By processing extensive data, agri-
robots recognise patterns and make precise decisions. 
Image recognition lets them differentiate between crops 
and weeds, optimising herbicide use and aiding disease 
prevention. They autonomously grade produce by size, 
colour and defects, and employ predictive analytics 
for improved navigation.

Agri-robots offer substantial benefits in farming. They 
diminish reliance on manual labour, leading to cost savings 
and uninterrupted operations. Their accuracy optimises 
seed, fertiliser, and pesticide use, boosting yields while 
reducing waste. Continuous monitoring facilitates early 
problem detection, supporting prompt interventions 
and informed decisions, especially in irrigation.

Agriculture’s complex visuals (Figure 2), from varied crops 
to disease patterns, challenge traditional computer vision, 
which often misreads these intricacies. In contrast, deep-
learning-based vision algorithms autonomously capture 

Deep learning is pivotal in modern agriculture, especially for advanced agri-robots. Using vast data, 
these robots discern patterns, optimising tasks from herbicide application to disease detection. 
However, their consistent performance hinges on a deep-learning system adept at agricultural 
complexities. This article explores challenges in crafting such systems, touching on economic impacts 
and design trade-offs. The AutoDL Platform is introduced, which is a solution for merging data & model 
management, task automation, and application insights. 

these details with superior precision, underpinning 
the advanced features of modern agri-robots.

However, deep-learning models are perpetually evolving. 
As fresh data surfaces and scenarios shift, models require 
updates to stay relevant. The ever-changing tech landscape 
and varying application needs drive these adjustments. 
Thus, a deep-learning operations platform is crucial, 
managing a model’s lifecycle from training to monitoring, 
ensuring sustained peak performance. However, achieving 
this peak performance is not straightforward; there are 
numerous challenges and considerations to account for, 
as will be explored below.

Economics of agri-robots
A basic economic model might help in understanding 
the intricacies of deep learning for agri-robots (Figure 3). 
To understand this model, envision a field with M objects 
ready for harvest. The agri-robot mainly consists of two parts: 
the visual detection system and the mechanical harvesting 
apparatus. In the model, if the visual system detects an object, 
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Applications of deep learning in agriculture.
(a) Agri-robots.
(b) Intelligent monitoring.
(c) Greenhouse automation.
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the mechanical harvester acts with h [%] ‘success rate’. There 
is also a ‘visibility factor’ v [%], the ratio between the total 
number of objects in the field M and those visible in the 
image N. This factor can be enhanced by tweaking camera 
angles or using mechanisms to provide an unobstructed view. 

Detection systems are not infallible. Given N actual objects 
visible in the image and P predictions, the outcomes might be:
• true positive (TP): the system correctly detects an object;
• false negative (FN): the system misses an object;
•  false positive (FP): the system inaccurately detects a non-

existent object. 

Here, TP + FN = N = vM and TP + FP = P. 

This rudimentary economic model for agri-robots centres 
on two aspects. Firstly, unharvested crops result from 
missed detections (e.g., false negatives). Secondly, needless 
harvester activations, stemming from false detections where 
no actual object exists (e.g., false positives). The maximum 
revenue and nominal cost are defined by:

  Revenuemax = M · p

  Costnominal = (M / A) · c

Here, A [actions/hour] is the harvester throughput, c [€/hour] 
is the cost per machine hour, and p [€/obj] is the price per 
harvested object.

Depending on object visibility, harvester success rate 
and detection failure, the actual revenue and cost will be:

 
 Revenue = M · v · [TP / (FN + TP )] · h · p

   = v · TPR · h · Revenuemax

  Cost  = [(TP + FP) / A ] · c

   = [(TP + FP) / (M · v) ] · v · Costnominal

   = [(TP + FP) / (FN + TP) ] · v · Costnominal

   = (TPR + FPR) · v · Costnominal

Here, TPR is the true positive rate (or recall), and FPR 
is the false positive rate (or false alarm rate).

From this model, it is evident that even a slight decrease in 
the TPR can dent farmer profits. For example, a TPR of 95% 
means 5% of potential harvest is overlooked. Moreover, every 
inaccurate detection diminishes efficiency. For example, if for 
every accurate detection there is an inaccurate one, the robot’s 
harvest efficiency drops by half. In agriculture, a mere 5% dip 
in yield or profit is already impactful. 

This underscores the high accuracy requirements of agri-
robot visual systems. In specialised tasks such as leaf 
cutting, where incorrect detections risk damaging a plant’s 
main stem, precision requirements can reach a remarkable 
99.9997% (which equals cutting 5 main stems in a 6-months 
season @ 1000 leaves/hour, 8 hours/day), underscoring 
the demanding nature of developing robust deep-learning 
solutions.

Design trade-offs
Deep-learning model development involves a complex, 
iterative optimisation process (Figure 4), as the efficacy 
of a model is deeply influenced by its architecture and 
the dataset it is trained on.

Typical visual agriculture scenarios.
(a)  Count the number of strawberries and estimate their ripeness.
(b)  Differentiate between main stem and leaf stem of cucumber plant for a leaf-cutting robot.
(c) Count number of blue berries.
(d) Detect and locate asparagus just growing above ground.
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Main factors impacting system performance:
1)  Object visibility v and camera properties limit the actual number of objects visible on image.
2) Detection systems are never perfect.
3) Mechanical harvester actions are for h [%] successful.
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Model architecture and size
Selecting the right architecture is pivotal for the model’s 
performance. Distinct architectures cater for specific 
problem types. For image object detection, industry-
recognised architectures include R-CNN, YOLO, and SSD, 
with each having multiple variations and distinct backbones 
such as VGG-16, ResNet, and MobileNet. Moreover, new 

architectures like DETR and ViT have emerged, leveraging 
vision transformers for object detection. Given the rapid 
advancements in this field, the most recent architecture 
might provide the solution you seek.

Model input size
Input dimensions, especially in images, are critical. Larger 
inputs capture intricate details but at the cost of computational 
power and memory. While they can increase the true positive 
rate by identifying subtle details, they may also increase 
the false alarm rate due to noise or non-relevant details.

Dataset size
A vast dataset presents diverse scenarios for the model, 
aiding its learning (Figure 5). But as the dataset size grows, 
ensuring its quality and relevance becomes crucial to 
maintain high accuracy. However, it’s essential to 
acknowledge that at the onset of any deep-learning project, 
a ‘complete’ dataset is rarely available. As field conditions 
and scenarios evolve, so does the dataset, emphasising 
the need for periodic model training and refinements.

Operational context
Every specific robot has its own operational context 
(Figure 6) and because of the demanding performance 
of the detection systems requires its own optimised deep-
learning model. These robots, working in varied environ-
ments, encounter unique data distributions based on their 
tasks and surroundings. This diversity in data distribution 
impacts the model’s performance. As the operational 
context shifts, the data nature varies too, making it 
imperative for the model to remain adaptable and precise.

In summary, while the foundation of a deep-learning model 
lies in its architecture and the data it is trained on, it is 
essential to understand the interconnectedness of design 
decisions, such as input dimensions, the scope of the 
dataset, and the operational nuances of the robot’s 
environment. The computational constraints of agri-robots 
directly influence both the model’s architecture and input 
size, thereby limiting the ultimate potential of the vision 
system. Achieving the ideal balance necessitates an 
exhaustive exploration across possible combinations of 
model architecture, dataset and model training parameters. 

Given the time-intensiveness of training and evaluation, 
automating this process is not just beneficial, but almost essential. 
Additionally, the sheer volume of data generated by agri-robots 
mandates a strategic approach to identify and integrate unique 
samples, further emphasising the role of automation.

Deep-learning platform
Given the multifaceted challenges in crafting and refining deep-
learning models for agri-robots, a specialised operational 
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The deep-learning ‘big loop’: collecting data, annotating data, training a model, deploying a model. 
The loop starts again when model performance is not sufficient anymore. 

In general, more data increases the model performance, but also increases the cost to preprocess 
and annotate the data.

Two situations in different cucumber greenhouses. Lighting conditions, plant variety and 
surroundings are different, demanding for optimising the model per operational context.
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platform is paramount. As agri-robots evolve and the intricacies 
of deep-learning models grow, a platform specifically tailored 
to the agri-robotics domain becomes indispensable. For this 
platform to truly address the unique needs of this sector, 
it should integrate the following key features:
•  Data management capabilities
  Comprehensive functionalities for (remotely) collecting, 

storing, and preparing datasets are essential. Given 
agriculture’s multifaceted nature, marked by diverse field 
conditions and a slew of variables, an agile and systematic 
data management framework is of utmost importance.

•  Annotation support
  Annotation remains pivotal in priming datasets for deep-

learning applications. To this end, the platform must 
either incorporate a state-of-the-art annotation tool or be 
compatible with external annotation services, ensuring 
fast and accurate data labelling.

• Framework neutrality
  To prevent inefficiencies and circumvent the hurdles of 

migrating between deep-learning frameworks (such as 
TensorFlow, PyTorch, ONNX, Ultralytics, SuperGradient, 
and more), the platform should remain deep-learning 
implementation framework neutral. Such a feature guarantees 
smooth transitions between different deep-learning frame-
works without the burden of exorbitant switching costs.

• Training scaling
  At its essence, the platform should excel in model 

training. Equipped with the necessary computational and 
software tools, it should adeptly manage varied datasets, 
a spectrum of architectures, and the inherent challenges 
posed by agri-robotics. 

87

The deep-learning operations platform AutoDL consists of three layers: 
data & model layer, automation layer and insights layer.

The AutoDL platform is a deep-learning operations platform that manages data, models and insights 
in order to optimise model performance for every specific operational context.

• Automated model optimisation
  Considering the multitude of hyperparameters and 

configurations in deep learning, an automatic model-
optimisation mechanism is indispensable. Leveraging 
cutting-edge algorithms, the platform should pinpoint the 
most suitable model configurations, minimising manual, 
and often tedious, experimentation.

• Performance monitoring
  It is vital to have a continuous (remote) model performance 

monitoring system in place. This ensures the early detection 
of any performance drift, facilitating swift rectifications.

• Business insights dashboard
  Beyond its technical capabilities, the platform should adeptly 

convert raw model metrics and operational statistics into 
tangible business insights. A user-friendly dashboard, 
providing a concise view of pivotal performance indicators, 
efficiency measures, and other pertinent data, aids 
stakeholders in drawing informed conclusions.
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In conclusion, the envisioned deep-learning platform for agri-
robots must strike a balance – it should seamlessly intertwine the 
sophisticated technical procedures with tangible business insights 
while upholding its user-centric design, adaptability and scalability.

AutoDL platform
VBTI developed a deep-learning operations platform called 
AutoDL that implements the features listed previously. This 
platform unfolds across three distinct yet interconnected layers, 
each offering solutions tailored to agri-robots (Figure 7). 

Data & model layer 
This layer delves into data abstraction and framework 
integration. With the evolving landscape of robotics, data 
formats such as RGB, RGBD and pointclouds, and stereo images 
have become crucial. Recognising this diversity, the platform 
seamlessly integrates and manages these varying formats. 

This layer further introduces an advanced datastore that 
not only stores data but also incorporates detailed metadata, 
embedding vectors and dataset versioning. The latter is 
crucial for reproducible model training results and testing 
different models against the same evaluation datasets. Such 
a set-up streamlines smart searches, particularly valuable 
when sifting through extensive datasets. 

Additionally, to simplify the often overwhelming deep-learning 
landscape for users, ‘model trainer’ abstractions have been 
integrated. By abstracting the complexities of deep-learning 
frameworks and leveraging Docker software containerisation 
technology (Docker is a tool for packaging and running 
applications in a consistent and isolated way, making them 
easier to deploy and manage), users can focus on modelling 
without the distractions of underlying technical intricacies.

Automation layer 
This layer implements automation, scalability and remote 
data collection. The deep-learning lifecycle, spanning from 
data collection to model deployment, is intricate. To navigate 
this complex loop, the platform introduces automation at 
every stage, ensuring efficient and optimised agri-robot 
performance. Given the compute-intensive nature of deep-
learning tasks, especially training, the platform is fortified 
with GPU acceleration, offering the much-needed scalability. 

Complementing this is a scheduler that manages various jobs, 
from training to evaluations, guaranteeing optimal resource 
usage. As real-time data collection becomes increasingly 
paramount for model monitoring, the platform not only 
supports remote data collection but also smartly selects the 
most valuable data, ensuring consistently high-quality insights.

Insights layer 
This layer highlights continuous monitoring and actionable 
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Single camera and deep-learning model set-up gives insufficient performance.

business insights. As agri-robots are set into action, the 
platform’s strength in continuous data monitoring comes 
alive. By interpreting this data, it can be distilled into business 
dashboards, shedding light on the robot’s efficacy, potential 
areas for enhancement, and more. The data’s depth allows the 
platform to undertake predictive analytics, such as forecasting 
plant growth stages, thereby optimising robot tasks. 

Furthermore, the platform’s flexibility ensures its evolution in 
parallel with agricultural needs. For instance, it can be trained 
to recognise specific disease patterns or pests, ensuring the 
agri-robots remain state-of-the-art. Beyond robot 
performance, the platform expands its monitoring horizon 
to evaluate the productivity of the field and individual 
plants, granting users a holistic view of their operations.

Multi-layered
In summation, the multi-layered deep-learning operations 
platform (Figure 8) has been designed to meet the specific 
demands of agri-robots. It encompasses everything from data 
handling and model training to real-time insights, ensuring a 
holistic and streamlined approach to agricultural deep learning. 

Conclusion
Integrating deep learning into agriculture, notably through 
agri-robots, marks a transformative turn in modern farming. 
Utilising vast data, these robots detect intricate patterns, 
enhancing operations like disease identification and precision 
irrigation. Yet, their commercial potential rests on the 
strength and adaptability of the embedded deep-learning 
systems. These models, central to agri-robotics’ growth, 
bring challenges from data acquisition to real-time oversight. 

The AutoDL Platform’s tri-layered design streamlines this 
complex landscape, blending data abstraction, automation and 
insights. It forges a crucial link between deep learning and hands-
on agricultural tasks. As agri-robotics progresses, platforms 
such as AutoDL become vital, shaping commercially viable 
robots and elevating traditional farming through technology.
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Cucumber plant maintenance in green-
houses involves leaf cutting, a crucial 
activity to maintain plant productivity. 
However, this task is labour-intensive. In 
collaboration with VDL Cropteq, VBTI aimed 
to innovate by introducing an autonomous 
robot to undertake this duty (Figure 9).

In the initial approach, a single-camera vision 
system was adopted for detection. The system’s 
primary objective was to classify four essential 
plant components: main stem, leaf stem, 
cucumber stem, and nodes. To derive the 
best-performing model tailored to the 
dataset, a model optimisation search was 
undertaken (Figure 10). Typically, a single 
search encompassed several hundred training 

jobs, consuming hundreds of GPU-hours. This task is fully 
automated in the AutoDL platform.

Given the high costs associated with mistakenly 
cutting the main stem, the detection system had to 
exhibit unparallelled precision. A challenge emerged: 
distinguishing between the main stem and the leaf 
stem, as their visual differences are minute, posing 
a constraint on the system’s performance.

Recognising the need for refinement, the subsequent 
design incorporated multiple overview cameras 
alongside a close-up camera. Unlike the previous model 
that relied on a single snapshot, the enhanced system 
(Figure 12) utilises the overview cameras to track 
objects over time. Now, the system’s performance 
is enhanced by integrating redundancy in the vision 
system – both temporally (e.g., tracking) and spatially 
(using varied camera angles, including a detailed 
close-up for better pixel representation of plant details). 
With this set-up, there are now two models to train: 
one model for the overview cameras and one model 

for the close-up camera.

Once the robot becomes operational, 
the performance of the models is 
continuously monitored. Since every 
model is trained and evaluated on a 
specific dataset, should the operating 
conditions begin to deviate from the 
training dataset’s statistics, there may 
be a need for new data collection 
and model retraining.10

Detection model definition, model 
optimisation and model performance. 
Note that the model performance needs 
to be corrected for the fact that not all 
objects in the background have been 
annotated. 

Utilising multiple cameras and deep-learning models enhances performance relative to a singular camera and model set-up.
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Prototype leaf-cutting robot 
by VDL CropTeq.

Case: leaf-cutting robot
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