
THEME – TRANSITION FROM DOCUMENT-DRIVEN TO MODEL-BASED SYSTEMS ENGINEERING

BRIDGING THE GAP
BETWEEN REQUIREMENTS
ENGINEERING AND
SYSTEMS ARCHITECTING

AUTHOR’S NOTE

Tim Wilschut is a co-founder
of Ratio Computer Aided
Systems Engineering,
located in Eindhoven (NL),
and hybrid lecturer at
Eindhoven University
of Technology (TU/e).
He studied Mechanical
Engineering at TU/e, where
he also obtained his Ph.D.;
his thesis was titled “System
specification and design
structuring methods for a
lock product platform” [1].
Building on this work and the
collaboration with the TU/e
High-Tech Systems Center,
Ratio develops systems
engineering methods and
tools. Wilschut does so
together with Ratio’s
other co-founder, Tiemen
Schuijbroek, since 2018,
when they had finished
their Ph.D. and M.Sc. thesis,
respectively.

t.wilschut@ratio-case.nl
t.j.l.schuijbroek@ratio-case.nl

TIM WILSCHUT

Introduction
In recent years, several methods and software tools have
emerged to support the transition from document-driven
systems engineering to model-based systems engineering.
Though being an improvement from fully document-driven
engineering, these methods and tools bring along several
practical challenges.

Firstly, most of these methods and tools work like databases
in which pieces of information, such as requirements, are
manually labelled and linked to other pieces of information,
such as elements of the product breakdown structure (PBS),
to keep track of all the information (i.e. what relates
to what) that is being produced during the course of
a development project. This manual labelling and linking
of requirements to breakdown structure elements results
in a heavy administrative workload for systems engineers
and architects.

With stringent deadlines it cannot be avoided that corners
are cut here and there. Moreover, to create these links one
requires a deep understanding and an overview of the entire
system. As the complexity of systems has been increasing
in recent decades, it is impossible for a person to have
such a complete understanding and overview. Moreover,
continuous development and many unknowns complicate
matters even further.

New methods and software tools have been designed to support the transition
from document-driven to model-based systems engineering. Though bringing
improvements, these methods and tools bring along several practical challenges.
To resolve the issues, Ratio Computer Aided Systems Engineering continues the
development of the open-source Elephant Specification Language (ESL), for which
the foundations were laid at Eindhoven University of Technology. ESL is a language
to write highly structured system specifications from which system architecture models
are automatically derived. It has been designed from an engineering perspective
rather than an information management perspective, with the ultimate goal of
bridging the gap between requirements engineering and systems architecting.

Secondly, the quality and consistency in labelling and linking
completely relies on ‘good behaviour’ of those who create the
labels and links. There are no means to, for example, formally
check whether a requirement really relates to the elements
it has been linked to. Instead, one usually resorts to expert
reviews, which quickly lead to lengthy discussions.

Ratio

Ratio Computer Aided Systems Engineering is a company
that specialises in the development of methods and tools
for requirements engineering and the modelling, analysis,
and design of system architectures and product portfolios.
Ratio has experience with modelling and analysing a wide
variety of systems, ranging from locks and bridges to
nuclear fusion power plants. Recently, Ratio set up a
partnership with Quootz to allow customers to directly
apply Ratio’s product-portfolio
analysis methods within
the Quootz product
configurator software.

 WWW.RATIO-CASE.NL
 WWW.QUOOTZ.NL

nr 3 2023 MIKRONIEK  5

THEME – TRANSITION FROM DOCUMENT-DRIVEN TO MODEL-BASED SYSTEMS ENGINEERING

Thirdly, most tools focus on information management, not
on the quality of the information being managed. As such,
these tools simplify the management of large volumes of
information. The information itself, however, may be just
as vague and ambiguous as in a fully document-driven
approach.
These combined challenges often result in a linking
structure that is inconsistent and incomplete, does not
provide a model of the systems architecture, and therefore
has little value in everyday engineering practice.

Therefore, systems engineers and architects often resort
to graphical modelling tools to create systems architecture
models manually. In turn, these models must be kept up-to-
date and consistent across the board as well as with their
related requirement specifications, which increases the
administrative workload even further and results in a gap
between requirements engineering and systems architecting.

Six blind men and the elephant
When creating systems architecture models, systems
engineers and architects will often find themselves in
lengthy discussions on what the systems architecture really
is. These discussions often resemble the parable of the six
blind men that went to see an elephant. As the story goes,
they explored the elephant by touch and disputed long and
loud about what an elephant is, until the prince came out.
“Be quiet now,” he said, “because you are all in the right
and you are all in the wrong.” In real life, however, there
is usually no prince to be found.

To resolve these issues, the open-source Elephant
Specification Language (ESL) [1] [2] was created. ESL is
a simple, highly structured formal language for defining
a PBS and all functional, behavioural, and design
requirements in a consistent and concise manner. As it
is natural-language-based, it is readable by any engineer.
Yet, it is sufficiently structured to allow the ESL compiler
to automatically derive dependencies (links) between
functional requirements, behavioural requirements,
design requirements, and elements of the PBS based on
mathematical rules. This network of dependencies defines
the systems architecture.

Automated dependency derivation reduces the risk
of human error drastically as dependencies cannot be
forgotten. Moreover, it reduces the human workload
tremendously. For example, at the Dutch Institute For
Fundamental Energy Research (DIFFER) [3], ESL is being
used to create the conceptual design of a pulsed-laser-
deposition research cluster. At the time of writing, the
research cluster specification defines a PBS comprising
three layers containing 161 elements. These elements are
subject to nearly a thousand requirements between which

over 13,000 dependencies are automatically derived in less
than a second, which allows for efficient systems-
architecting modelling and analysis.

The text-based format allows one to easily manage ESL
files using version control software such as Git and SVN,
which has been used for change management in software
development for decades.

A break with convention
ESL has been designed from an engineering perspective
rather than an information management perspective. In
other words, it has been designed to aid systems engineers
and architects in designing the system by allowing one to
automatically generate systems architecture models from
the requirement specifications. Perhaps counterintuitively,
it therefore deliberately deviates from several classical
systems engineering concepts.

One decomposition to rule them all
Firstly, in classical systems engineering it is often advocated
to use separate system, function, and requirement
decomposition trees of which the elements are linked to
another. In practice, however, systems engineers will often
experience that it is very hard to create separate function
and requirement trees and that when they manage to do so
these structures provide little value in designing the actual
system. If you have ever found yourself jumping through
near poetic hoops to describe the function of something as
simple as a button without being allowed to call it a button,
you will be glad to leave these discussions behind.

The reason for this is quite clear; in practice it is often simply
impossible to create separate function and requirement trees
[4]. For example, the function ‘measure temperature’ might
contribute to the functions ‘control position’ and ‘control
temperature’. Consequently, it is impossible to assign a single
‘parent function’ to the function ‘measure temperature’.
This also holds for requirements.

Moreover, many functions and requirements originate
from design decisions rather than other functions and
requirements. For example, if one decides that an actuator
is to be a hydraulic actuator, the functions ‘filter oil’, ‘store
oil’, ‘pump oil’ and requirements with respect to the type
of oil appear. While choosing a spindle actuator would yield
a completely different set of functions and requirements.

Hence, ESL only requires one to define the product
decomposition (= PBS). All functions and requirements
are formulated in terms of flows between PBS elements
and properties of PBS elements. Dependencies between
the functions, requirements, flows, properties and PBS
elements are automatically derived by the ESL compiler.

6  MIKRONIEK nr 3 2023

Systems, modules, components, parts, tomàto, tomáto
Secondly, in classical systems engineering it is often
advocated to give different levels of a PBS a different name.
For example, the system layer, the module layer, and the
part layer. In practice, systems engineers and architects
often struggle with squeezing their system into such
a structure. It is usually much more natural to create
a decomposition in which different branches of the tree
have an arbitrary number of levels.

Besides, it is relative whether something is to be considered
a system, module, or part. For example, when looking at a
factory one could view a machine within that factory as a
component, while the supplier of the machine will view it as
a system. In other words, tomàto, tomáto, it does not matter
what one calls a layer of the decomposition. In essence, all
elements at each layer represent a component of a system.

Therefore, in ESL all elements within a PBS are referred
to as components. A component may contain other
components, which in turn may contain components
themselves, etcetera. This allows a user to define a
decomposition tree with an arbitrary number of branches,
each of which may have an arbitrary number of levels.

Blibs, blabs, blobs and off-the-shelf components
Thirdly, in classical systems engineering it is often
advocated to model the systems architecture on different
levels of abstraction, such as a conceptual, functional,
technological and physical level. Each of these levels is
successively more detailed and concrete. The consistency
among these models needs to be ensured by systems
engineers and architects, which contributes significantly
to their administrative workload.

Moreover, it is a non-trivial task as different parts of the
system are usually in different stages of development. In
practice, 100%-new-to-the-world design rarely happens.
Engineers typically try to leverage existing designs and
solutions as much as possible to reduce costs, lead times,
and development risks. As such, some parts of a system
might already be fully designed and tested in the field,
while others are still in the conceptual design phase.

ESL does not distinguish between components at different
levels of abstraction. In fact, ESL components that represent
a conceptual blib, a functional blab, a technological blob,
or a physical off-the-shelf component can all exist within
the same specification. This allows engineers to describe
different parts of the systems at different levels of
abstraction and different levels of granularity all within
the same specification. One can simply let the specification
evolve as more information on the system design becomes
available.

Two flavours of function
Finally, in classical systems engineering function
specifications are often written in unconstrained natural
language. In ESL one can define goal-functions and
transformation-functions following a fixed grammar:
• �Goal-functions describe the purpose of one component

with respect to another component via simple sentences.
For example, the goal function ‘the power-supply shall
provide power to the electric-motor’ defines the functional
purpose of the power-supply with respect to the electric-
motor. In fact, it defines a functional dependency between
these two components that is quantified by the variable
power that flows from one to another.

• �Transformation-functions describe the transformation
of flows within components. For example, the
transformation-function ‘the electric-motor shall convert
power into torque’ defines what the electric-motor shall do
internally and defines dependencies between the inputs
and outputs of a component.

These two flavours of function enforce users to be concise
regarding the functional flows that flow through the system
and define them as variables. These variables are the basis
for detailed analysis models. In fact, these two flavours
of function are a key feature of ESL, allowing for the
automated dependency derivation throughout the PBS [5].
Therefore, this enables ESL to bridge the gap between
requirements engineering and systems architecting.

The single source of truth
As mentioned before, ESL files can be easily managed using
conventional version control software to create a single
source of truth while allowing different exploratory branches
of the specification to diverge and finally merge back into
the main specification in an organised fashion. In practice,
however, it is unlikely that every engineer will be familiar
with ESL in the near future. This is where the generated
PDF and Excel output comes in. ESL files can automatically
be converted into nicely formatted documents, which –
once more – guarantees their consistency.

More important and innovative, however, is that ESL
specifications are automatically converted into a Python
Graph object, which allows for easy manipulation, analysis,
and visualisation of the specifications. Standard functions
are available for visualising the system decomposition and
systems architecture in various graph and matrix formats.
These visualisations are guaranteed to be consistent with
the written specifications and consistent among each other,
as they are all generated from the same source. This
provides systems engineers and architects with effective
means to discuss and increase general understanding
of the systems architecture.

nr 3 2023 MIKRONIEK  7

THEME – TRANSITION FROM DOCUMENT-DRIVEN TO MODEL-BASED SYSTEMS ENGINEERING

ESL example

Listing 1 shows as an example the ESL specification of a
pump (line 6) and a drive-mechanism (line 8). The purpose
of the drive-mechanism is to provide at least 50 Nm of
torque to the pump as stated by goal-requirement g-dm-01
(line 13). The pump is a CentrifugalPump (line 18) that

internally shall convert torque into water-flow as specified
by transformation-requirement t-cp-01 (line 26). The
drive-mechanism is an ElectricalDriveMechanism (line 29)
that internally shall convert a power-potential into power
(transformation-requirement t-dm-01, line 38).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

world
 variables
 torque is a mechanical-energy-flow

 components
 pump is a CentrifugalPump with arguments
 * torque
 drive-mechanism is an ElectricalDriveMechanism ...
 with arguments
 * torque

 goal-requirements
 g-dm-01: drive-mechanism shall provide torque ...
 to pump with subclauses
 * s-01: torque shall be at least 50 Nm

define component CentrifugalPump
 parameters
 torque is a mechanical-energy-flow

 variable
 water-flow is a liquid-material-flow

 transformation-requirements
 t-cp-01: shall convert torque into water-flow

define component ElectricalDriveMechanism
 parameters
 torque is a mechanical-energy-flow

 variables
 power is an electrical-energy-flow
 power-potential is a chemical-energy-flow

 transformation-requirements
 t-dm-01: shall convert power-potential into torque

 components
 power-source is a Battery with arguments
 * power
 * power-potential

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

 motor is a BrushlessMotor with arguments
 * power
 * torque

 goal-requirement
 g-ps-01: power-source shall provide power to motor

define component BrushlessMotor
 parameters
 power is a electrical-energy-flow
 torque is a mechanical-energy-flow

 variables
 conversion-efficiency is an efficiency

 transformation-requirements
 t-bm-01: shall convert power into torque ...
 with subclauses
 * s-01: conversion-efficiency shall be at ...
 least 80 [%]

define component Battery
 parameters
 power-out is an electrical-energy-flow
 power-potential is a chemical-energy-flow

 transformation-requirement
 t-ps-01: shall convert power-potential ...
 into power-out

define type
 mechanical-energy-flow is a real with unit Nm
 electrical-energy-flow is a real with unit W
 chemical-energy-flow is a real with unit Wh
 liquid-material-flow is a real with unit l/s
 efficiency is a real with unit %

define verb
 provide to
 convert into
 send to

Listing 1. Example of an ESL specification.

The drive-mechanism is composed of a power-source (line
41), which is a Battery (line 67), and a motor (line 44), which is
a BrushlessMotor (line 52). The purpose of the power-source is
to provide power to the motor as stated by goal-requirement
g-ps-01 (line 49). Internally, the motor shall convert power
into torque with an efficiency of at least 80% as defined
by transformation-requirement t-bm-01 (line 61).

From this ESL specification, the component-function
multi-domain-matrix (CF-MDM) models shown in Figure 1
are automatically generated. MDM models are a simple
and compact means to visualise and analyse system
architectures [6]. The left CF-MDM in Figure 1 shows the
dependencies between components (rows, cols (columns)
1-2), the mapping of components to functions (rows 3-5,
cols 1-2) and the dependencies between goal- and
transformation-requirements (rows, cols 3-5) at the first
decomposition level of the specification. The right
CF-MDM shows exactly the same image, but now at the
second decomposition. That is, the drive-mechanism has

been decomposed into its sub-components power-source
and motor.

Note that in Figure 1a components pump and drive-
mechanism have a mechanical-energy-flow dependency
(row 2, col 1), while in the right figure components pump
and motor have a mechanical-energy-flow dependency
(row 3, col 1). Moreover, note that in Figure 1a components
pump and drive-mechanism relate to goal-requirement
g-dm-1 (row 5, cols 1, 2), while in Figure 1b components
pump and motor relate to goal-requirement g-dm-1 (row 8,
cols 1, 3). This migration of dependencies and goal-
requirements is automatically performed by the ESL
compiler ensuring the consistency of the dependency
structure throughout the decomposition tree.

Similarly, in Figure 1a one can identify the goal-function
chain t-dm-01 g-dm-01 t-cp-01 indicating the
functional transformations and transfer of chemical-energy
into mechanical-energy into a water-flow. In Figure 1b one

8  MIKRONIEK nr 3 2023

Clustering, sequencing, and comparison algorithms are
available to assist systems engineers and architects in, for
example, improving the modularity of the system, carrying
out change management, and comparing architecture
alternatives. Finally, the derived dependency graph can be
exported in conventional data formats such as JSON, YAML,
and XML, which allows one to import the data into other
software of choice for further analysis and visualisation.

ESL and the supporting tooling have many additional
features, which are not discussed within this article, such
as clustering algorithms for modularity optimisation.
For a more detailed ESL example and a more thorough
explanation, please check out the ESL user manual [2].

REFERENCES
[1]	� T. Wilschut, “System Specification and design structuring methods

for a lock product platform”, Ph.D. thesis, Eindhoven University
of Technology, 2018.

[2]	 docs.ratio-case.nl/manuals/esl_manual
[3]	 www.differ.nl
[4]	� N. Crilly, “Function propagation through nested systems”, Design

Studies, 34 (2), pp. 216-242, 2013.
[5]	� T. Wilschut, L.F.P. Etman, J.E. Rooda, and J.A. Vogel, “Automated

generation of a function-component-parameter multi-domain
matrix from textual function specifications”, Research in Engineering
Design, 29 (4), pp. 531-546, 2018.

[6]	� S.D. Eppinger, and T.R. Browning, Design structure matrix methods
and applications, MIT press, Cambridge, MA, USA, 2012.

[7]	 www.gitlab.com/ratio-case-os/python

chemical-energy-flow
liquid-material-flow
mechanical-energy-flow

1 2 3 4 5

pump
drive-mechanism

t-cp-01
t-dm-01
g-dm-01

1
2
3
4
5

component - function mapping
function input - output mapping

1 2 3 4 5 6 7 8

pump
power-source

motor
t-cp-01
t-ps-01
t-bm-01
g-ps-01
g-dm-01

1
2
3
4
5
6
7
8

chemical-energy-flow
liquid-material-flow
mechanical-energy-flow

component - function mapping
function input - output mapping

electrical-energy-flow

The component-function multi-domain-matrix generated from the ESL specification of Listing 1.
(a)	 First decomposition level.
(b)	 Second decomposition level.

1a 1b

can identify the same path of functional transformation and
transfer of flows. That is, one can identify the path t-ps-01
g-ps-01 t-bm-01 g-dm-01 t-cp-01, which is longer
than the path within Figure 1a, as the ESL compiler has
automatically replaced the level-1 transformation-
requirement t-dm-01 with the level-2 transformation- and
goal-requirements t-ps-01, g-ps-01, and t-bm-01 that are
performed by the sub-components of motor. This again

ensures the consistency of the linking structure throughout
the system decomposition tree.
For a more detailed ESL example and a more thorough
explanation, please check out the ESL user manual [2].
The resulting dependency network can be used for interface
management, change management, modularity analysis,
failure mode and effects analysis, risk analysis and many
other applications.

The bright future

Ratio is determined to continue the development and improvement of ESL
and supporting tooling to fully integrate requirements engineering with systems
architecting. That said, ESL and all supporting tooling [7] is open source under
a GNU GPL V3 license. Hence, Ratio invites anyone interested to use the tooling
and contribute to the development.

 T.WILSCHUT@RATIO-CASE.NL

nr 3 2023 MIKRONIEK  9

