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Introduction
Axiomatic Design (AD) is a concept developed to address 
the challenges that arise during the design phase in the 
development of complex systems. The method was 
developed by Nam P. Suh of the Massachusetts Institute 
of Technology (MIT) in the second half of the 1970s [1]. 
AD declares ‘Axioms’ that cannot be proved or deduced 
from physical phenomena, which gives the method its 
name. Initially, a number of six design Axioms were 
defined. Two of the Axioms have stood the test of time, the 
others appeared to be corollaries of these two. Since then, 
the methodology has centred around two primary axioms:
•  �The first axiom, the ‘Independence Axiom’, directs the 

designer to ensure that the functional requirements 
are independent. This means that each functional 
requirement should be determined, commonly referred 
to as ‘satisfied’, by a specific design parameter and 
not influenced by others. The advantage of such 
independence is that changes to one design parameter 
should not interfere with multiple other functions. 
Consequently, the design is more robust, easier to control 
and improve, and less prone to unexpected outcomes.

•  �The second axiom, the ‘Information axiom’, encourages 
minimising the information content of the design. 

Axiomatic Design (AD) is a systems engineering methodology that enables the creation 
of good system designs by improving the causality of system functionality, the system’s  
physical realisation, and manufacturing processes. This is done by using mathematical 
principles that describe independence between these elements. AD contributes to a 
better understanding of main and alternative design options. Its applications extend 
across various industries, from mechanical engineering to (bio)medical systems and 
even social systems. AD is particularly suitable for addressing problems in high-tech 
systems development. This article outlines what AD is and how it can be applied.

Essentially, the design should be as simple and clear as 
possible. As few steps or parameters as possible should 
be required to move from function to physical solution.

The application of the Axioms contributes to a structured 
design process, reduces complexity and promotes 
robustness. It provides a rational basis for design choices 
and improves communication between team members 
using the formalised methodology. This introduction to 
AD focuses on how system requirements are decomposed 
in AD. To do this, the Independence Axion is applied. The 
Information Axiom will be described in a future article.

Organizing Domains
AD provides a systematic method of translating functional 
needs into functional design, reducing reliance on intuition 
or guesswork in the design process. This systematic 
approach creates a clear roadmap, starting with identifying 
functional requirements, fulfilling these requirements 
through design parameters, and finally representing 
these parameters in process variables.

AD demands clear formulation of design objectives 
through the establishment of ‘Domains’:
•  �functional domains, containing the Functional 

Requirements, from now on to be called FRs;
•  �physical domains, containing the Design Parameters, 

or DPs;
•  �process domains, containing the Process Variables, or PVs.

The domains are hierarchically decomposed as shown 
in Figure 1.

According to the definition in AD, the Independence Axiom 
advises to “Maintain the independence of the functional 
requirements”. AD also explains how this can be done 
from a mathematical perspective, as shown in Figure 2.

Axiomatic Domains and their hierarchical organisation.

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

1

10  MIKRONIEK nr 3 2023



Process 
Domain

Process
Variables

PV1
PV2
PV3
PVn

Physical 
Domain

Design
Parameters

DP1
DP2
DP3
DPn

Functional 
Domain

Functional 
Requirements

FR1
FR2
FR3
FRn

Product
Design

=  [A]  ·

Process
Design

=  [B]  ·

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

Zig

Zag

Etc

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

Zig

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Zag

The domains, in which functional requirements (FRs), 
design parameters (DPs), and process variables (PVs) are 
represented as vectors, are interrelated with design matrices. 
The design equations according to good AD practice 
are defined as:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

Here, [A] and [B] are the product and process design 
matrices, respectively. If a product design has three FRs, 
DPs, and PVs, the product design matrix [A] and the 
process design matrix [B] have the following form:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

The design equation for the FRs is then defined as follows:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

Here, FR1 to FR3 are three functional requirements and 
DP1 to DP3 are three relevant design parameters. In this 
representation, a ‘good design’ would be an ‘uncoupled’ 
or a ‘decoupled’ one if the matrix is diagonal or triangular, 
respectively, as shown below:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

	 (uncoupled)

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

	 (decoupled)

Here, the X-es indicate non-zero elements of the matrix 
and as such indicate a relation between the associated DPs 
and the FRs. In an uncoupled design, every FR is related 
to a single DP, while in a decoupled design, it may be related 
to more than a single DP, but if the right order is applied 

to adjust the FRs with the DPs, all FRs can be tuned 
sequentially. In AD, this design matrix takes a central place 
because it defines the structure and as such the behaviour 
of the design.

The design equation for the FRs does not yet include 
the relation to the manufacturability of the physical system. 
This is where the process design matrix [B] is applied:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 

The full design equation, which correlates the process 
variables with the functional requirements, then has this form:

	

1: 
 

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷} 
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃} 

 
 
 
2: 
 

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] 

 
3: 

 

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] 

 
 
4:  
 

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] 

 
 
 
5:  
 

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]   

 
 
6:  

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]  

 
 
7: 
 

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 
8: 
 

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

] 

 
 A caveat must be made here that only a limited number of 

system designs are sufficiently well understood in practice to 
successfully apply this equation. The examples in this article 
are therefore limited to the translation from DPs to FRs.

The process of zigzagging
To check that all FRs are satisfied by their DPs and 
subsequently the DPs are satisfied by their PVs, AD uses 
a procedure called ‘zigzagging’. Zigzagging is a top-down 
descent through the design hierarchy, covering all domains 
sequentially. At each level, it is checked whether the FRs 
and DPs are satisfied before going down to the next level, 
as shown in Figure 3.

The process of zigzagging is always performed from the left- 
to the right-hand side. Zigzagging covers all domains. 
Successful completion of the zigzagging process will lead 
to an uncoupled or a decoupled design matrix and satisfies 
the Independence Axiom, which completes the conceptual 

Axiomatic Domains and their relations.

The process of hierarchically zigzagging through the domains.

3

2
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phase of the project. Characteristic of the process is that 
even at the highest level the manufacturability of a system 
is already considered. All requirements are addressed 
in a structured and sound manner.

AD application examples

Example 1: Independence Axiom applied for the design 
of a water faucet
A traditional example for learning about the possible 
coupling between the Functional Requirements of a system 
is the ‘Water Faucet Example’. We consider two FRs 
of a water faucet that need to be satisfied:

	 FR1 = Control temperature
	 FR2 = Control flow rate

These two FRs need to be controlled independently.

In a traditional faucet, as shown in Figure 4, there are 
two levers that control hot and cold water:

	 DP1 = Control flow of hot water
	 DP2 = Control flow of cold water

Together with the FRs, these lead to the following design 
equation:

	

9: 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X X
X X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
10: 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
11: 
 

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2] 
 
 
 
12: 
 

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1] 
 
 
 
13: 
 

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

] 

 

The product design matrix, consisting of the four X-es, is a 
coupled matrix, which means that if temperature FR1 needs 
to be adjusted this can be done by adjusting both the hot 
and cold water, DP1 and DP2, respectively. Unfortunately, 
the change of either DP1 or DP2 also affects the waterflow 
FR2. If a user would want to achieve a particular 

temperature and flow, a situation that needs satisfaction 
of both FR1 and FR2 at the same time, an iterative attempt 
to adjust both DP1 and DP2 could lead to an approximation 
of the desired situation. However, the intended temperature 
and flow will never be reached exactly.

A more convenient, modern faucet is shown in Figure 5. 
Its design has different DPs:

	 DP1 = Rotate handle
	 DP2 = Lift handle

The design matrix then has the following form:

	

eqaution 10: 
 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
equation 11: 
 
 

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2] 
 
 
 
equation 12: 
 
 

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1] 
 
 
 
equation 13: 
 
 

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

] 

 

This leads to a construction that is an uncoupled design, 
because FR1, the temperature of the water, can be solely 
controlled by DP1, rotating the handle, and control of 
the flow, FR2, can be realised by lifting the handle, DP2. 
This means that with this approved design, independently 
controlling temperature and flow is significantly easier 
for the user. The product design matrix in this case is 
a decoupled matrix, which means that the independence 
of the FRs is guaranteed. In AD, this is called a ‘Good 
Design’.

Example 2: Decomposition of an armchair using the process 
of zigzagging
The second example describes the design of a chair. Its 
functionality will be decomposed and the design including 
the processes for manufacturing will emerge while doing. 
The process starts with the quest for the highest-level FR 
of a chair. A good FR is, according to the definition in AD, 
an answer to the question “What should the device do?” 

This faucet with a single lever is easier to control. (Licence: Flickr creative 
commons)

4

5

Faucet with two levers, for adjusting flow and temperature to preferred 
values. (Licence: Flickr creative commons)
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The answer should be defined as activating as possible 
and positively formulated. It should describe what our chair 
should do, not what it should not do. Typically, the answer 
begins with an activating verb (with ‘to be’, ‘to have’ and 
‘to provide’ being considered as non-activating verbs). 
In this case, FR1 is defined as “Enable people to stay 
comfortably in a place for a longer period of time”.  
This is shown in the upper left part of Figure 6.

The next step is to determine “how this is done”. This 
is basically a transformation from the functional to the 
physical domain, describing what the solution will look like. 
In this case, we determine that there will be a mechanical 
construction that will support our body parts while we 
are staying somewhere. 

The third and last decision to make at this hierarchical level 
is to choose what our goals are when the production of 
this product starts; will we develop a new manufacturing 
method, e.g. a particular kind of 3D printing or rather use 
standard processes? In this case, we decide that we will use 
standard, known process technology, as we rather focus 
on the functionality of the chair and what it looks like. This 
choice completes the first ‘zig’ of our hierarchical descent. 

Next, we ‘zag’ back to the functional domain and continue 
the decomposition of the functionality of our chair. We 
decide that a good and comfortable chair needs to support 
both our back and bottom. In the physical domain, it can 
be seen that this will be realised with vertical and horizontal 
surfaces or planes, respectively. This decision is followed 
by the choice in the process domain that we intend 
to use some pressing process to manufacture the chair, 
which concludes the second hierarchical level and allows us 
to zag down one level further. 

At the third level, something important happens while 
defining the embodiment of our chair. This can be 
investigated by looking at the FRs:

	 FR1.2 = Ensure comfy back angle
	 FR2.2 = Ensure comfy knee angle

These FRs need to be satisfied with a single DP:

	 DP1.2 = Correct shape of the frame of our chair

The design equation then has the shape of:

	

eqaution 10: 
 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
equation 11: 
 
 

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2] 
 
 
 
equation 12: 
 
 

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1] 
 
 
 
equation 13: 
 
 

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

] 

 

The two planes of the chair, vertical and horizontal, are 
attached to a single frame that needs to meet two functions, 
which warns us that we are dealing with a coupled system. 

This is obviously caused by the fact that a single geometry 
of the frame determines the satisfaction of FR3.2 and FR3.4. 

Note that this is not necessarily a bad outcome, as there 
may be reasons to combine functions, e.g. for aesthetic 
or manufacturability reasons. However, it warns us that the 
coupling is present, limiting our design freedom, and that it 
could bother us now or later. Figure 7 shows chairs where 
the coupling is eliminated to enable a modular design.

In the first case (Figure 7a), the vertical and horizontal 
supports are integrated into a single body that determines 

Physical
Domain
(DPs)

Mechanical 
construction to 

support the body in 
specific places 

DP1
Vertical 
Plane

DP2
Horizontal 

Plane

Functional
Domain
(FRs)

Enable people to stay 
comfortably in a place 
for a longer period of 

time

FR1
Support 
One’s 
Back

FR2
Support 
One’s

Bottom

FR1.1
Equalise 
Pressure

Back
Support

FR1.2
Ensure
Comfy
Back 
Angle

FR2.1
Equalise 
Pressure
Bottom
Support

FR2.2
Ensure
Correct 
Knee 
Angle

Process
Domain
(PVs)

Known
production 
processes

PV1
Pressing 
Shape

PV2
Pressing 
Shape

DP1.1
Curved 
Surface

Back

DP1.2
Correct 

Shape of 
Frame of 

Chair

DP2.2
Curved 
Surface
Bottom

PV1.1
Pressing 

Wood 
Chips 
Back 

Shape

PV1.2
Tube 

Bending 
of

Frame

PV2.2
Pressing 

Wood 
Chips

Bottom 
Shape

6

Decomposition of FRs, DPs and PVs while zigzagging downwards.

Two chairs with a modular construction that prevents the frame from being coupled.

7a 7b
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Decomposition of FRs, DPs and PVs for the chairs of Figure 7.

the right angles. The frame itself just supports the height 
of that body. Figure 7b shows an alternative version of 
the same chair where adjustment of the height is enabled. 

Further analysis of these chairs learns that the designs 
also have theirs limitations. This can be seen when the 
decomposition is revisited, and the design parameters 
are updated as shown in Figure 8.

The design equation for the alternative chair design with 
the curved body to support both back and bottom, 
has the following form:

	 FR1.1 = Equalise pressure for back
	 FR2.1 = Equalise pressure for bottom

These FRs need to be satisfied with a single DP:

	 DP1.1 = Curved and padded part

	

eqaution 10: 
 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
equation 11: 
 
 

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2] 
 
 
 
equation 12: 
 
 

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1] 
 
 
 
equation 13: 
 
 

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

] 

 

	

Here, the design equation indicates again coupling of the 
FRs, in a different way, however. In this case, it enables the 
designer to produce two versions of the chair, in Figures 7a 
and 7b, the latter being height adjustable. It may be difficult 
to change the angle of the back support of the chair, since 
it needs an adjustment of the mould, which requires a large 
investment. Again, it is the choice of the designer whether this 
is acceptable or not. If this coupling is perceived as a problem 
the chair could be further improved as shown in Figure 9.

The FRs and DPs of the improved system have the following 
form:
	 FR1.1 = Equalise pressure for back
	 FR1.2 = Ensure comfortable angle of back support
	 FR2.1 = Equalise pressure for bottom
	 FR2.2 = Ensure correct angle of knees
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One’s

Bottom

FR1.1
Equalise 
Pressure

Back
Support

FR1.2
Ensure
Comfy
Back 
Angle

FR2.1
Equalise 
Pressure
Bottom
Support

FR2.2
Ensure
Correct 
Knee 
Angle

Process
Domain
(PVs)

Standard 
production 
processes

PV1
Pressing 
Shape

PV2
Pressing 
Shape

DP1.1
Curved 

and 
Padded 
Surface

DP1.2
Underpinn
ed angle 
Between 
Back and 
Bottom

DP2.2
Under-
pinned 
Height 
Base of 
Chair

PV1.1
Pressing 

Wood 
Chips 

PV1.2
Pressing 

Mould

P2.2
Tube 

Bending 
of

Frame

Physical
Domain
(DPs)

Mechanical 
construction to 

support the body in 
specific places 

DP1
Vertical 
Angle 

Adjustable 
Plane

DP2
Horizontal 

Height 
Adjustable 

Plane

Functional
Domain
(FRs)

Enable people to 
stay comfortably in 
a place for a longer 

period of time

FR1
Support 
One’s 
Back

FR2
Support 
One’s

Bottom

FR1.1
Equalise 
Pressure

Back

FR1.2
Ensure
Comfy
Back 
Angle

FR2.1
Equalise 
Pressure
Bottom

FR2.2
Ensure
Correct 
Knee 
Angle

Process
Domain
(PVs)

Standard 
production 
processes

PV1
Pressing 
Shape

PV2
Pressing 
Shape

DP1.1
Curved, 
Padded 
Surface

Back

DP1.2
Adjust-

able 
Subframe 
Back of 
Chair

DP2.2
Adjust-

able 
Base of 
Chair

DP2.1
Curved, 
Padded 
Surface
Bottom

PV1.1
Pressing 

Wood 
Chips, 

Padding

PV1.2
Tube 

Bending 
of 

Subframe

PV2.2
Tube 

Bending 
Base of 
Chair

PV2.1
Pressing 

Wood 
Chips, 

Padding

8

10

Decomposition of FRs, DPs and PVs for a fully decoupled design of a chair.

9

Example of a decoupled chair as discussed in the text.
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These FRs need to be satisfied with the following DPs:

	 DP1.1 = Curved, padded surface of back support
	 DP1.2 = Adjustable subframe back of the chair
	 DP2.1 = Curved, padded surface of bottom support
	 DP2.2 = Adjustable base of the chair

The full design equation is then as follows:

	

eqaution 10: 
 
 

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2] 

 
 
 
equation 11: 
 
 

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2] 
 
 
 
equation 12: 
 
 

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1] 
 
 
 
equation 13: 
 
 

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

] 

 

This indicates that we are dealing with an uncoupled system 
of which all the FRs can be satisfied with their own DP. Such 
a fully decoupled chair could look like the one in Figure 10.

Conclusion
AD is a tool that can help designers analyse and evaluate 
design decisions. Designers may need some time 

to familiarise themselves with the method, but the 
functionality that comes with it is well worth the effort. 
It exposes where a design has dependencies and what 
can be done about them. In many cases, the coupling 
can even be eliminated with little effort, making the design 
more robust. In many cases it increases the possibilities 
to fine-tune a design at a later stage of the project.

To provide insight into how the method can be applied  
in a low-threshold manner, two examples of AD have  
been worked out. While these examples are not high-tech 
systems, it does not take much imagination to see how 
AD can be applied in complicated or even complex systems. 
In addition, it helps the user to keep an overview of 
the coupled structures that occur in system designs.
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