
THEME – MATHEMATICAL APPROACH OF HIGH-TECH SYSTEMS DESIGN

AXIOMATIC DESIGN

AUTHORS’ NOTE

Erik Puik is professor of
Smart Manufacturing at
Fontys University of Applied
Sciences in Eindhoven (NL).
Rik Lafeber is researcher
Microsystem Technology
and lecturer Mechanical
Engineering at HU University
of Applied Sciences in
Utrecht (NL).

erik.puik@fontys.nl
www.fontys.nl
www.hu.nl

ERIK PUIK AND RIK LAFEBER

Introduction
Axiomatic Design (AD) is a concept developed to address
the challenges that arise during the design phase in the
development of complex systems. The method was
developed by Nam P. Suh of the Massachusetts Institute
of Technology (MIT) in the second half of the 1970s [1].
AD declares ‘Axioms’ that cannot be proved or deduced
from physical phenomena, which gives the method its
name. Initially, a number of six design Axioms were
defined. Two of the Axioms have stood the test of time, the
others appeared to be corollaries of these two. Since then,
the methodology has centred around two primary axioms:
• �The first axiom, the ‘Independence Axiom’, directs the

designer to ensure that the functional requirements
are independent. This means that each functional
requirement should be determined, commonly referred
to as ‘satisfied’, by a specific design parameter and
not influenced by others. The advantage of such
independence is that changes to one design parameter
should not interfere with multiple other functions.
Consequently, the design is more robust, easier to control
and improve, and less prone to unexpected outcomes.

• �The second axiom, the ‘Information axiom’, encourages
minimising the information content of the design.

Axiomatic Design (AD) is a systems engineering methodology that enables the creation
of good system designs by improving the causality of system functionality, the system’s
physical realisation, and manufacturing processes. This is done by using mathematical
principles that describe independence between these elements. AD contributes to a
better understanding of main and alternative design options. Its applications extend
across various industries, from mechanical engineering to (bio)medical systems and
even social systems. AD is particularly suitable for addressing problems in high-tech
systems development. This article outlines what AD is and how it can be applied.

Essentially, the design should be as simple and clear as
possible. As few steps or parameters as possible should
be required to move from function to physical solution.

The application of the Axioms contributes to a structured
design process, reduces complexity and promotes
robustness. It provides a rational basis for design choices
and improves communication between team members
using the formalised methodology. This introduction to
AD focuses on how system requirements are decomposed
in AD. To do this, the Independence Axion is applied. The
Information Axiom will be described in a future article.

Organizing Domains
AD provides a systematic method of translating functional
needs into functional design, reducing reliance on intuition
or guesswork in the design process. This systematic
approach creates a clear roadmap, starting with identifying
functional requirements, fulfilling these requirements
through design parameters, and finally representing
these parameters in process variables.

AD demands clear formulation of design objectives
through the establishment of ‘Domains’:
• �functional domains, containing the Functional

Requirements, from now on to be called FRs;
• �physical domains, containing the Design Parameters,

or DPs;
• �process domains, containing the Process Variables, or PVs.

The domains are hierarchically decomposed as shown
in Figure 1.

According to the definition in AD, the Independence Axiom
advises to “Maintain the independence of the functional
requirements”. AD also explains how this can be done
from a mathematical perspective, as shown in Figure 2.

Axiomatic Domains and their hierarchical organisation.

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

1

10  MIKRONIEK nr 3 2023

Process
Domain

Process
Variables

PV1
PV2
PV3
PVn

Physical
Domain

Design
Parameters

DP1
DP2
DP3
DPn

Functional
Domain

Functional
Requirements

FR1
FR2
FR3
FRn

Product
Design

= [A] ·

Process
Design

= [B] ·

Physical
Domain

DP
0

DP
1

DP
2

DP
1.1

DP
1.2

DP
2.1

DP
2.2

Functional
Domain

Zig

Zag

Etc

FR
0

FR
1

FR
2

FR
1.1

FR
1.2

FR
2.1

FR
2.2

Zig

Process
Domain

PV
0

PV
1

PV
2

PV
1.1

PV
1.2

PV
2.1

PV
2.2

Zag

The domains, in which functional requirements (FRs),
design parameters (DPs), and process variables (PVs) are
represented as vectors, are interrelated with design matrices.
The design equations according to good AD practice
are defined as:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

Here, [A] and [B] are the product and process design
matrices, respectively. If a product design has three FRs,
DPs, and PVs, the product design matrix [A] and the
process design matrix [B] have the following form:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

The design equation for the FRs is then defined as follows:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

Here, FR1 to FR3 are three functional requirements and
DP1 to DP3 are three relevant design parameters. In this
representation, a ‘good design’ would be an ‘uncoupled’
or a ‘decoupled’ one if the matrix is diagonal or triangular,
respectively, as shown below:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

	 (uncoupled)

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

	 (decoupled)

Here, the X-es indicate non-zero elements of the matrix
and as such indicate a relation between the associated DPs
and the FRs. In an uncoupled design, every FR is related
to a single DP, while in a decoupled design, it may be related
to more than a single DP, but if the right order is applied

to adjust the FRs with the DPs, all FRs can be tuned
sequentially. In AD, this design matrix takes a central place
because it defines the structure and as such the behaviour
of the design.

The design equation for the FRs does not yet include
the relation to the manufacturability of the physical system.
This is where the process design matrix [B] is applied:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

The full design equation, which correlates the process
variables with the functional requirements, then has this form:

	

1:

{𝐹𝐹𝐹𝐹} = [𝐴𝐴] ∙ {𝐷𝐷𝐷𝐷}
{𝐷𝐷𝐷𝐷} = [𝐵𝐵] ∙ {𝑃𝑃𝑃𝑃}

2:

[𝐴𝐴] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

]

3:

[𝐵𝐵] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

]

4:

 [
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

]

5:

[𝐴𝐴] = [
X 0 0
0 X 0
0 0 X

]

6:

[𝐴𝐴] = [
X 0 0
X X 0
X X X

]

7:

[
𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2
𝐷𝐷𝐷𝐷3

] = [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

8:

[
𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2
𝐹𝐹𝐹𝐹3

] = [
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

] ∙ [
𝑏𝑏11 𝑏𝑏12 𝑏𝑏13
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33

] ∙ [
𝑃𝑃𝑃𝑃1
𝑃𝑃𝑃𝑃2
𝑃𝑃𝑃𝑃3

]

 A caveat must be made here that only a limited number of

system designs are sufficiently well understood in practice to
successfully apply this equation. The examples in this article
are therefore limited to the translation from DPs to FRs.

The process of zigzagging
To check that all FRs are satisfied by their DPs and
subsequently the DPs are satisfied by their PVs, AD uses
a procedure called ‘zigzagging’. Zigzagging is a top-down
descent through the design hierarchy, covering all domains
sequentially. At each level, it is checked whether the FRs
and DPs are satisfied before going down to the next level,
as shown in Figure 3.

The process of zigzagging is always performed from the left-
to the right-hand side. Zigzagging covers all domains.
Successful completion of the zigzagging process will lead
to an uncoupled or a decoupled design matrix and satisfies
the Independence Axiom, which completes the conceptual

Axiomatic Domains and their relations.

The process of hierarchically zigzagging through the domains.

3

2

nr 3 2023 MIKRONIEK  11

THEME – MATHEMATICAL APPROACH OF HIGH-TECH SYSTEMS DESIGN

phase of the project. Characteristic of the process is that
even at the highest level the manufacturability of a system
is already considered. All requirements are addressed
in a structured and sound manner.

AD application examples

Example 1: Independence Axiom applied for the design
of a water faucet
A traditional example for learning about the possible
coupling between the Functional Requirements of a system
is the ‘Water Faucet Example’. We consider two FRs
of a water faucet that need to be satisfied:

	 FR1 = Control temperature
	 FR2 = Control flow rate

These two FRs need to be controlled independently.

In a traditional faucet, as shown in Figure 4, there are
two levers that control hot and cold water:

	 DP1 = Control flow of hot water
	 DP2 = Control flow of cold water

Together with the FRs, these lead to the following design
equation:

	

9:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X X
X X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

10:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

11:

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2]

12:

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1]

13:

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

]

The product design matrix, consisting of the four X-es, is a
coupled matrix, which means that if temperature FR1 needs
to be adjusted this can be done by adjusting both the hot
and cold water, DP1 and DP2, respectively. Unfortunately,
the change of either DP1 or DP2 also affects the waterflow
FR2. If a user would want to achieve a particular

temperature and flow, a situation that needs satisfaction
of both FR1 and FR2 at the same time, an iterative attempt
to adjust both DP1 and DP2 could lead to an approximation
of the desired situation. However, the intended temperature
and flow will never be reached exactly.

A more convenient, modern faucet is shown in Figure 5.
Its design has different DPs:

	 DP1 = Rotate handle
	 DP2 = Lift handle

The design matrix then has the following form:

	

eqaution 10:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

equation 11:

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2]

equation 12:

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1]

equation 13:

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

]

This leads to a construction that is an uncoupled design,
because FR1, the temperature of the water, can be solely
controlled by DP1, rotating the handle, and control of
the flow, FR2, can be realised by lifting the handle, DP2.
This means that with this approved design, independently
controlling temperature and flow is significantly easier
for the user. The product design matrix in this case is
a decoupled matrix, which means that the independence
of the FRs is guaranteed. In AD, this is called a ‘Good
Design’.

Example 2: Decomposition of an armchair using the process
of zigzagging
The second example describes the design of a chair. Its
functionality will be decomposed and the design including
the processes for manufacturing will emerge while doing.
The process starts with the quest for the highest-level FR
of a chair. A good FR is, according to the definition in AD,
an answer to the question “What should the device do?”

This faucet with a single lever is easier to control. (Licence: Flickr creative
commons)

4

5

Faucet with two levers, for adjusting flow and temperature to preferred
values. (Licence: Flickr creative commons)

12  MIKRONIEK nr 3 2023

The answer should be defined as activating as possible
and positively formulated. It should describe what our chair
should do, not what it should not do. Typically, the answer
begins with an activating verb (with ‘to be’, ‘to have’ and
‘to provide’ being considered as non-activating verbs).
In this case, FR1 is defined as “Enable people to stay
comfortably in a place for a longer period of time”.
This is shown in the upper left part of Figure 6.

The next step is to determine “how this is done”. This
is basically a transformation from the functional to the
physical domain, describing what the solution will look like.
In this case, we determine that there will be a mechanical
construction that will support our body parts while we
are staying somewhere.

The third and last decision to make at this hierarchical level
is to choose what our goals are when the production of
this product starts; will we develop a new manufacturing
method, e.g. a particular kind of 3D printing or rather use
standard processes? In this case, we decide that we will use
standard, known process technology, as we rather focus
on the functionality of the chair and what it looks like. This
choice completes the first ‘zig’ of our hierarchical descent.

Next, we ‘zag’ back to the functional domain and continue
the decomposition of the functionality of our chair. We
decide that a good and comfortable chair needs to support
both our back and bottom. In the physical domain, it can
be seen that this will be realised with vertical and horizontal
surfaces or planes, respectively. This decision is followed
by the choice in the process domain that we intend
to use some pressing process to manufacture the chair,
which concludes the second hierarchical level and allows us
to zag down one level further.

At the third level, something important happens while
defining the embodiment of our chair. This can be
investigated by looking at the FRs:

	 FR1.2 = Ensure comfy back angle
	 FR2.2 = Ensure comfy knee angle

These FRs need to be satisfied with a single DP:

	 DP1.2 = Correct shape of the frame of our chair

The design equation then has the shape of:

	

eqaution 10:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

equation 11:

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2]

equation 12:

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1]

equation 13:

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

]

The two planes of the chair, vertical and horizontal, are
attached to a single frame that needs to meet two functions,
which warns us that we are dealing with a coupled system.

This is obviously caused by the fact that a single geometry
of the frame determines the satisfaction of FR3.2 and FR3.4.

Note that this is not necessarily a bad outcome, as there
may be reasons to combine functions, e.g. for aesthetic
or manufacturability reasons. However, it warns us that the
coupling is present, limiting our design freedom, and that it
could bother us now or later. Figure 7 shows chairs where
the coupling is eliminated to enable a modular design.

In the first case (Figure 7a), the vertical and horizontal
supports are integrated into a single body that determines

Physical
Domain
(DPs)

Mechanical
construction to

support the body in
specific places

DP1
Vertical
Plane

DP2
Horizontal

Plane

Functional
Domain
(FRs)

Enable people to stay
comfortably in a place
for a longer period of

time

FR1
Support
One’s
Back

FR2
Support
One’s

Bottom

FR1.1
Equalise
Pressure

Back
Support

FR1.2
Ensure
Comfy
Back
Angle

FR2.1
Equalise
Pressure
Bottom
Support

FR2.2
Ensure
Correct
Knee
Angle

Process
Domain
(PVs)

Known
production
processes

PV1
Pressing
Shape

PV2
Pressing
Shape

DP1.1
Curved
Surface

Back

DP1.2
Correct

Shape of
Frame of

Chair

DP2.2
Curved
Surface
Bottom

PV1.1
Pressing

Wood
Chips
Back

Shape

PV1.2
Tube

Bending
of

Frame

PV2.2
Pressing

Wood
Chips

Bottom
Shape

6

Decomposition of FRs, DPs and PVs while zigzagging downwards.

Two chairs with a modular construction that prevents the frame from being coupled.

7a 7b

nr 3 2023 MIKRONIEK  13

THEME – MATHEMATICAL APPROACH OF HIGH-TECH SYSTEMS DESIGN

Decomposition of FRs, DPs and PVs for the chairs of Figure 7.

the right angles. The frame itself just supports the height
of that body. Figure 7b shows an alternative version of
the same chair where adjustment of the height is enabled.

Further analysis of these chairs learns that the designs
also have theirs limitations. This can be seen when the
decomposition is revisited, and the design parameters
are updated as shown in Figure 8.

The design equation for the alternative chair design with
the curved body to support both back and bottom,
has the following form:

	 FR1.1 = Equalise pressure for back
	 FR2.1 = Equalise pressure for bottom

These FRs need to be satisfied with a single DP:

	 DP1.1 = Curved and padded part

	

eqaution 10:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

equation 11:

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2]

equation 12:

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1]

equation 13:

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

]

	

Here, the design equation indicates again coupling of the
FRs, in a different way, however. In this case, it enables the
designer to produce two versions of the chair, in Figures 7a
and 7b, the latter being height adjustable. It may be difficult
to change the angle of the back support of the chair, since
it needs an adjustment of the mould, which requires a large
investment. Again, it is the choice of the designer whether this
is acceptable or not. If this coupling is perceived as a problem
the chair could be further improved as shown in Figure 9.

The FRs and DPs of the improved system have the following
form:
	 FR1.1 = Equalise pressure for back
	 FR1.2 = Ensure comfortable angle of back support
	 FR2.1 = Equalise pressure for bottom
	 FR2.2 = Ensure correct angle of knees

Physical
Domain
(DPs)

Mechanical
construction to

support the body in
specific places

DP1
Curved
Plane

DP2
Base of
Chair

Functional
Domain
(FRs)

Enable people to
stay comfortably in
a place for a longer

period of time

FR1
Support
One’s
Back

FR2
Support
One’s

Bottom

FR1.1
Equalise
Pressure

Back
Support

FR1.2
Ensure
Comfy
Back
Angle

FR2.1
Equalise
Pressure
Bottom
Support

FR2.2
Ensure
Correct
Knee
Angle

Process
Domain
(PVs)

Standard
production
processes

PV1
Pressing
Shape

PV2
Pressing
Shape

DP1.1
Curved

and
Padded
Surface

DP1.2
Underpinn
ed angle
Between
Back and
Bottom

DP2.2
Under-
pinned
Height
Base of
Chair

PV1.1
Pressing

Wood
Chips

PV1.2
Pressing

Mould

P2.2
Tube

Bending
of

Frame

Physical
Domain
(DPs)

Mechanical
construction to

support the body in
specific places

DP1
Vertical
Angle

Adjustable
Plane

DP2
Horizontal

Height
Adjustable

Plane

Functional
Domain
(FRs)

Enable people to
stay comfortably in
a place for a longer

period of time

FR1
Support
One’s
Back

FR2
Support
One’s

Bottom

FR1.1
Equalise
Pressure

Back

FR1.2
Ensure
Comfy
Back
Angle

FR2.1
Equalise
Pressure
Bottom

FR2.2
Ensure
Correct
Knee
Angle

Process
Domain
(PVs)

Standard
production
processes

PV1
Pressing
Shape

PV2
Pressing
Shape

DP1.1
Curved,
Padded
Surface

Back

DP1.2
Adjust-

able
Subframe
Back of
Chair

DP2.2
Adjust-

able
Base of
Chair

DP2.1
Curved,
Padded
Surface
Bottom

PV1.1
Pressing

Wood
Chips,

Padding

PV1.2
Tube

Bending
of

Subframe

PV2.2
Tube

Bending
Base of
Chair

PV2.1
Pressing

Wood
Chips,

Padding

8

10

Decomposition of FRs, DPs and PVs for a fully decoupled design of a chair.

9

Example of a decoupled chair as discussed in the text.

14  MIKRONIEK nr 3 2023

These FRs need to be satisfied with the following DPs:

	 DP1.1 = Curved, padded surface of back support
	 DP1.2 = Adjustable subframe back of the chair
	 DP2.1 = Curved, padded surface of bottom support
	 DP2.2 = Adjustable base of the chair

The full design equation is then as follows:

	

eqaution 10:

[𝐹𝐹𝐹𝐹1
𝐹𝐹𝐹𝐹2

] = [X 0
0 X] ∙ [

𝐷𝐷𝐷𝐷1
𝐷𝐷𝐷𝐷2]

equation 11:

[𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.2

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.2]

equation 12:

[𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹2.1

] = [XX] ∙ [𝐷𝐷𝐷𝐷1.1]

equation 13:

[
𝐹𝐹𝐹𝐹1.1
𝐹𝐹𝐹𝐹1.2
𝐹𝐹𝐹𝐹2.1
𝐹𝐹𝐹𝐹2.2

] = [
𝑋𝑋 0 0 0
0 𝑋𝑋 0 0
0 0 𝑋𝑋 0
0 0 0 𝑋𝑋

] ∙ [
𝐷𝐷𝐷𝐷1.1
𝐷𝐷𝐷𝐷1.2
𝐷𝐷𝐷𝐷2.1
𝐷𝐷𝐷𝐷2.2

]

This indicates that we are dealing with an uncoupled system
of which all the FRs can be satisfied with their own DP. Such
a fully decoupled chair could look like the one in Figure 10.

Conclusion
AD is a tool that can help designers analyse and evaluate
design decisions. Designers may need some time

to familiarise themselves with the method, but the
functionality that comes with it is well worth the effort.
It exposes where a design has dependencies and what
can be done about them. In many cases, the coupling
can even be eliminated with little effort, making the design
more robust. In many cases it increases the possibilities
to fine-tune a design at a later stage of the project.

To provide insight into how the method can be applied
in a low-threshold manner, two examples of AD have
been worked out. While these examples are not high-tech
systems, it does not take much imagination to see how
AD can be applied in complicated or even complex systems.
In addition, it helps the user to keep an overview of
the coupled structures that occur in system designs.

REFERENCE
[1]	 www.axiomaticdesign.org

www.bilz.ag

BILZ PRODUCTS – MADE IN GERMANY

WE SOLVE ANY VIBRATION
PROBLEM. YOUR PARTNER
FOR BETTER RESULTS.

Trillingsisolatie

Mail: info@oudereimer.nl I Tel: 035 646 0820 I www.oudereimer.nl I www.oudereimer.shop

Meer informatie:

nr 3 2023 MIKRONIEK  15

