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As in many places around the world, there’s an ongoing discussion at Fontys about testing students’ skills in 
relation to popular AI-chatbots such as ChatGPT, Chatsonic and YouChat. Chatbots have become increasingly 
popular with students to help them complete their assignments. Especially with those left to the last minute, 
they ensure certain rescue. The controversy revolves around issues such as the authenticity of assignments 
and rewarding students when they have not developed the ability to write a good essay themselves.

These conversations gave me déjà vu about the distress of teachers when I was a student myself. In the 1970s, 
electronic calculators were forbidden at primary school because using them jeopardised the development of 
mental arithmetic. Somewhat later, in the early 1980s, computers became available and as students we applied 
the Monte Carlo method for simulating tricky problems we needed to solve. Arguments concerning the 
inauthenticity of students’ work and their lacking the capabilities to solve these problems statistically echoed 
down the hallways. Not much later, during a traineeship, I used the finite-element method to model delicate 
contact terminals for miniature electrical connectors, which again led to similar discussion: was it my work 
or the computer’s?

In those debates about digital aids, the disagreement among professors on the subject was most interesting. 
Some of them had a hard time accepting such aids, while others considered them a positive addition to a 
modern toolbox. There were quite a few more ICT developments back then, including word processors, 
spreadsheets and CAD systems, although these tools were less intrusive in their contribution to knowledge. 

All in all, there was enough for a good exchange of opinions from a didactic perspective. Being students, 
we withdrew from the discussion. For myself, I decided that with the aid of these modern tools I was able 
to deliver better assignments in respect to content, quality and time. Why would I, a modern engineer 
in the making, limit myself to old-school methods and not take advantage of these tools that were going 
to be commonplace in my future career?

So, now we are dealing with chatbots, again aids that are changing the playing field. A deeper inspection shows 
that they have been developed primarily to deal with language models and that is exactly what they do best, 
handle language. When I tried to play a simple game of tic-tac-toe with one of the bots, I won every game 
easily. At one point, the system did not even realise that I had already won. When I perceptively pointed 
that out, it politely excused itself for the mistake of not crediting me with my victory. 

These systems do not appear intelligent necessarily, but they indeed are polite and well spoken. It turns out 
that AI-chatbots are computer software after all. However, after winning at chess, go and the American quiz 
Jeopardy, computers now have the added capability of handling text, including grammar. Again, it brings 
them a step closer to passing the Turing test.

Where it will end is a question that can only tickle fantasy. Technological developments follow each other 
quickly. I remember a TV commercial in my youth in which a Memorex cassette tape played the music of 
Ella Fitzgerald. The question posed was “Is it live or is it Memorex?”, suggesting that the recording was so 
true to life that no one could tell the difference. 

We all know what happened with Memorex; like many great inventions that relied on precision engineering, 
cassette tapes were replaced by CDs, and CDs eventually by online streaming. The same will happen to the 
current chatbots. They will be replaced by better chatbots, self-learning systems, intelligent image processors 
and later in time by intelligent robots, humanoids or even something bigger. Still, the basic question remains: 
why of all things would we as engineers, in the continuing process of our development, limit ourselves  
to old-school methods...

Erik Puik
Professor of SMART Manufacturing, Fontys University of Applied Sciences
erik.puik@fontys.nl, www.fontys.edu

“IS IT LIVE OR IS IT MEMOREX?”
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PUTTING MOTION 
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CÉSAR LÓPEZ, MUKUNDA BHARATHEESHA, BRAM ODROSSLIJ AND FRANK SPERLING

Introduction
AMR technology evolved to solve issues associated with 
AGVs (Autonomous Guided Vehicles), such as docking 
accuracy, localisation, navigation in unknown 
environments, and obstacle avoidance. One of the main 
enablers that has accelerated the growth of AMR technology 
is the open-source Robot Operating System, i.e. the ROS 
(latest version ROS2) middleware framework. 

In this article, the focus is on mobile robot navigation 
technology (see Figure 1), which must ensure a safe, reliable 
and efficient operation in an environment with fixed 
structures (walls, doors, etc.), static yet movable obstacles 
and dynamic obstacles such as people. Motion planning 
algorithms deal with the problem of finding a sequence 
of velocity and steering commands that will result in 
the mobile robot successfully reaching the desired target, 
subject to certain constraints and performance criteria, 
such as maximum time, velocity and accuracy.

There is an increasing need for deploying Autonomous Mobile Robots (AMRs) in the 
care sector, the public domain (hospitality and surveillance) and the industry (inspection, 
maintenance, logistics and agriculture). One of the challenges when developing mobile 
robot navigation technology is selecting the right, application-specific motion controller. 
The different motion controllers available in the ROS2 robot operating system framework 
have been tested on two robots with a different footprint performing various tasks. 
The results have been translated into a concise selection guideline.

ROS2 navigation architecture
ROS2 navigation uses a modular, configurable architecture 
that is gaining momentum as a standard for mobile robot 
navigation, comprising three main blocks: environment 
representation, global path planning, and local motion 
control; see Figure 2. 

Environment representation
Global and local cost maps are used to represent the fixed 
environment, as well as the static and dynamic obstacles. 
Exact collisions cannot be detected at this stage since they 
depend on the robot’s orientation. The fixed infrastructure 
is typically represented in the global cost map, which uses 
the map of the environment as input. The static and 
dynamic obstacles are represented in the local cost map, 
which uses inputs from sensors such as lidar, sonar 
and 3D cameras.

?

Static obstacles

Target area

Dynamic obstacles

The mobile robot navigation problem: how to generate a set of velocity 
and steering commands to let the robot reach its target area? ROS2 robot navigation architecture.

1

2
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Global path planning
Path planning is in charge of finding a collision-free path, 
i.e. a sequence of poses (positions and orientations) that 
connect a starting pose to a target pose. The path planner 
uses the global cost map together with the geometric 
footprint of the robot to assess whether it will be in collision 
with the fixed environment. In addition, path planners take 
into account the robot’s kinematic constraints; for example, 
the most common driving mechanism in industrial robots 
is the differential drive, which cannot drive the robot 
sideways. 

For path planning there exist multiple algorithms, 
from classical A* and Rapidly-exploring Random Trees 
to machine-learning-based path planning. 

Local motion control
Motion control is in charge of generating the actual velocity 
commands, using the generated global path to guide the 
robot towards the target pose along a sequence of poses 
known as the local trajectory. Many motion controllers deal 
internally with unknown obstacles and generate velocities 
that drive the robot around them, resulting in local 

trajectories that can largely deviate from the original global 
path (Figure 3). An alternative is to request global path 
re-planning. 

Execution
The high-level component task coordination is thus 
in charge of harmonising path planning and motion control 
to complete the navigation task. Finally, odometry control 
makes sure that the velocity and steering commands 
are properly executed in the robot.

ROS2 motion controllers
In ROS2 a number of motion controllers are available.

DWB: enhanced Dynamic Window Approach
Fundamentally, DWB is a modularised and enhanced 
version of the Dynamic Window Approach (DWA), 
featuring a configurable selection of (customisable) scoring 
functions, which can increase the efficiency of the controller 
and help to prevent navigation failures. 

In its basic form, DWA/DWB (Figure 4) uses a trajectory 
generation and selection approach in an iterative process 
comprising four steps: 
1.  Discretely sampling the robot’s control space.
2.  �Performing a forward simulation of each sampled 

control to predict its effect.
3.  �Scoring each resulting trajectory, using a metric 

that incorporates characteristics such as proximity 
to obstacles, proximity to the goal, proximity to 
the global path, and velocity. 

4.  �Picking the highest-scoring trajectory and using 
the associated controls.

DWA has an inherent ability to deal with dynamic obstacles. 

Global path

Local trajectory

Global path

Local trajectory

Re-planned global path

Global path

Local trajectory

DWB sampled trajectories

For previously unknown obstacles, two approaches can be followed.
(a)	 The motion controller planning a new trajectory.
(b)	 The path planner generating a new global path.

3b

3a

DWB strategy: discrete sampling of the robot control space 
followed by a selection based on several criteria.
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ESTIMATING BALL-BEARING 
FRICTION
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JORN VEENENDAAL

Introduction
The field of Machine Learning (ML), a subset of Artificial 
Intelligence (AI), has seen impressive development 
and growth over the last decade. ML’s astonishing rise 
to prominence within many disciplines is no doubt aided 
by its numerous impressive accomplishments, building 
on the ability of ML algorithms to improve themselves 
automatically through acquiring and processing experience 
[1]. Examples are DeepMind’s AlphaGo algorithm that 
defeated the world champion in the game of go in 2016, 
OpenAI’s ChatGPT’s natural language processing capability, 
and DeepMind’s AlphaFold that solved the long-standing 
protein folding problem in 2020.

Despite its many achievements, ML has seen only relatively 
limited, cautious implementation in the field of 
mechatronics. For this reason, MI-Partners, which 
specialises in the development of high-end mechatronic 
systems, decided to start a project to test the current 
capabilities of ML in a real industrial application. The 
research question prompted by this ambition was directed 
towards a practical use case: can an ML model reliably 
predict the friction of a linear ball bearing? 

This article describes the development of an ML algorithm 
for this use case. First, the friction model is elaborated, 
followed by a discussion of the learning strategy and the 
algorithm selection, after which the detailed algorithm 
design is presented. To conclude, the algorithm is tested, 
with a direct comparison with the friction model 
concerned, the LuGre model.

Modelling friction
Currently, a Lund-Grenoble (LuGre) [2] friction model is 
a good method of modelling the friction behaviour of linear 
ball bearings. Although the model is accurate when well 
tuned, the reason for undertaking this investigation was 

To date, Machine Learning (ML) has found only relatively limited implementation in 
high-end mechatronic systems. To test its capabilities in a real industrial application, 
the challenging case of friction estimation was investigated. A model was developed 
for predicting frictional properties of linear ball bearings, for very small displacements. 
The resulting ML model performed well during training and validation, but rather less 
so in stand-alone operation. ML is a promising tool for friction estimation, but clearly 
there is room for improvement in algorithm development.

to discover whether it is possible for an ML algorithm to 
approach the performance of the LuGre model predictions, 
and possibly overcome the LuGre shortcomings in 
parameter sensitivity and inability to model advanced 
friction properties, such as a change in viscosity or 
the creation of oil bumps.

The LuGre model, as described by Equations 1 to 3, builds 
upon the principles of the Dahl friction model [3]. It is 
governed predominantly by the relative velocity v(t) and 
the hidden state variable z(t). This z(t) cannot be measured 
practically, but it can be interpreted as the averaged bristle 
deformation (see Figure 1), where a bristle describes a small 
connection between two sliding objects.

The bristle deformation, partially described by g(v) in 
Equation 3, is based on constants such as the Coulomb and 
Stribeck force, Fc and Fst, respectively. Combining the scaled 
contribution of the bristle deflection and its derivative with 
respect to time,
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Here σ0, σ1 are the material property coefficients for stiffness 
and damping, respectively. The constant vst represents 
the characteristic velocity of the velocity-friction force.
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Machine Learning strategy
ML algorithms are often characterised by their learning 
strategy. There are three main learning strategies and the 
differences between them derive from the way they allow an 
ML algorithm to extract patterns from a particular data set. 

The first strategy concerns supervised learning, which 
encompasses algorithms that learn to improve their output 
predictions based on some input by comparing the output 
to a known true answer in a given training set [5] and using 
the resulting error to improve the ML model. 
Another strategy involves unsupervised learning, its aim 
being to unravel the structure that underlies the given set 
of data [6]. Finally there is reinforcement learning, which 
distinguishes itself from the other strategies by its emphasis 
on an agent learning by direct interaction with its 
environment, without relying on exemplary supervision 
or complete models of the environment [7].

In the current use case, the nature of the generally well-
understood phenomenon of friction did not favour the use 
of unsupervised strategies. That is because unsupervised 
learning specialises mainly in finding the main features that 
govern the observed behaviour in a data set. As centuries of 
research into the subject of friction have already provided 
most of the relevant information, it would be unwise (and 
inefficient) to neglect this knowledge. Furthermore, the 
required input and output data for the friction use case 
could be generated on demand via the LuGre model 
or physical experiments. This would create an abundance 
of representative training data sets. 

Likewise, reinforcement learning was deemed a plausible 
but more complex and demanding solution compared to 

supervised learning. Altogether, supervised learning was 
selected as the most promising strategy for the friction use 
case, which paved the way for the next step in the project: 
algorithm selection.

Algorithm selection
Within the strategy of supervised learning [8], three 
different algorithms were considered as serious candidates 
for this use case. The algorithms considered – K-Nearest 
Neighbour (KNN), Support Vector Regression (SVR) 
and Artificial Neural Networks (ANN) – are all well suited 
for the inherent regression problem type of this use case. 

An ANN-based algorithm (for a schematic representation 
see Figure 2) was deemed best suited. ANNs are proven 
universal function approximators [9]. It is this property, 
combined with various examples that show they can solve 
differential equations [10] [11] and systems with hysteresis 
[12], that made ANNs a good candidate. Although the KNN 
and SVR were also considered, neither of these options 
was commonly associated with this type of problem, which 
made them a less promising solution compared to the ANN 
algorithm. With the algorithm selected, the next logical 
phase in the project was the detailed design.

Detailed design
Four sequential steps were taken for the design of the final 
ML algorithm: model architecture selection, data creation, 
model regularisation and hyperparameter tuning.  
For the ML-model architecture, it was concluded that the 
ML model should have two inputs: the current velocity of 
the reference profile imposed on the system with friction, 

Graphical representation of bristle deformation [4].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input
layer: L1

First
hidden

layer: L2

Aditional hidden
layers: L[2;N-2]

Last hidden 
layer: L (N-1)

Output layer:
L(N)

Forward pass

1

Schematic representation of the main operating principle of an ANN: an interconnected group 
of perceptrons (artificial neurons) that are typically aggregated into layers. The mathematical 
representation on the bottom includes the nonlinear activation function f(·), which produces 
the output per layer.
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