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Introduction
The precision machine building community finds 
itself continuously facing new challenges in terms 
of requirements for dynamic performance. Precision 
machines have become faster and more accurate over time 
and this trend has not stopped, and will not stop in the 
future, as far as we can look. A large range of mechanical 
engineering techniques is available for achieving dynamic 
performance, ranging from sophisticated mechanical 
design principles – such as statically determined design – 
to complex and intelligent control and software solutions, 
such as advanced motion control and feedforward 

solutions. Somewhere in between these topics, and often 
stepped over, is the field of passive damping.

Passive damping has been studied since approximately 
the 1960s [1], but for many years was not usually applied 
in precision machine designs. This is in contrast to many 
other fields, such as structural engineering and aerospace 
engineering, where passive dampers have been integrated 
into designs for many decades, to counteract disturbances 
from wind, traffic, earthquakes, etc. and effectively limit 
the resulting deformation – and thereby, stress – in these 
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The effect of damping on machine dynamics.
(a)  Dynamic model with dx(t) as point of interest (POI), which is the relative displacement output between mass 1 and mass 2. 
(b)  The Bode diagram shows the transmissibility from floor vibrations to this POI: dx(t)/xf(t). 
 The difference in damping value is visible at the resonance frequency around 160 Hz.
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structures. The cause of this relatively late application 
of damping in the field of precision engineering seems 
to have a relation to the required accuracy of the high-tech 
systems involved. Accuracy, but primarily repeatability 
and reproduci bility, need to be high, in contrast with the 
structures in other engineering fields that used damping 
much earlier. For these structures, mainly deflection 
was important, which relates directly to stress and safety 
factors. In the field of precision engineering, however, 
this is significantly different, as the focus lies on design 
for stiffness, low hysteresis, low friction, etc.
Over the last two decades, slowly but steadily, damping has 
been adopted in the field of precision engineering, enabled 
by improved computational power and ease of dynamic 
modelling. Material models have become more accurate 
[2], and experience has been gained in how to apply these 
materials in precision designs, as well as in dealing with 
the results in terms of system characteristics. Currently, 
this has resulted in multiple passive damper solutions 
in the field of precision machine design, even to being 
implemented in sub-nanometer precision machines.

The effect of damping
To zoom in on the topic of damping, we will divide 
precision machines into two categories, the first being fast 
machines that move quickly and need short settling times. 
These machines are typically limited in their performance 
by the high-frequency dynamics, which restricts the 
bandwidth of the feedback control loop and introduces 
transient oscillations in the settling phase (after the 
accelerations have ended). The second category includes 
machines that require good standstill performance. 

In this case, the flexible dynamics is also problematic, as 
it is typically excited by various vibration sources, such as 
floor vibrations, acoustics, noise from electronics, etc.

In both cases, passive damping can help improve 
performance by adding damping to the flexible dynamics. 
For the first category of machines, this leads to short 
settle times, because the kinetic energy is dissipated more 
quickly. For the second category (standstill performance), 
higher damping values lead to less amplification 
of the oscillations at resonance frequencies, resulting 
in smaller steady-state vibration amplitudes. 

As an example, Figure 1 presents a dynamic model of a 
machine. The input is – for simplicity – a random floor 
displacement spectrum (white noise), and the output is 
the relative displacement at the point of interest (POI), 
which is the position difference between the two masses  
(dx(t) = relative output). The transmissibility from floor 
displacement to relative displacement at the POI is given in 
Figure 1b, which clearly shows the effects of the vibration 
isolation characteristics at 3 Hz and the internal dynamics at 
160 Hz. The blue curve shows the transmissibility for low 
modal damping on the flexible dynamics, the red curve for a 
tenfold increase of the modal damping. The result is a lower 
amplification factor (a lower resonance peak).

Figure 2 shows a step response of the two masses of Figure 
1a in the upper plot and the relative displacement in the 
lower plot. When the modal damping of the resonance at 
160 Hz is changed, the upper plot hardly changes, because 
its characteristics originate mainly from the isolation 
system at 3 Hz. However, the lower plot shows a significant 
difference in settling time. Figure 2b shows the effect 
of this damping increase, at the resonance at 160 Hz, 
on the POI and in the time domain. The increased decay 
rate of the oscillation is clearly visible.

Note that this difference in vibration amplitude is caused 
by the increased damping of the internal dynamics only. 
In addition, for motion-control systems it is the increase 
of damping at resonance frequencies that enables higher 
bandwidths (open-loop cross-over frequency at 0 dB). As 
damping is increased, the resonance peaks are attenuated 
(see Figure 1b) and higher feedback gains can be applied 
with equal stability margins.

Increasing natural frequencies first
The field of passive damping adds a tool to the mechanical 
designer’s toolbox. Once a mechanical design has been 
created according to the rules of precision engineering 
to maximise stiffness and minimise moving mass 
(i.e. maximise natural frequencies), damping can help 
to further improve performance. 

2a

2b

Responses of the system of Figure 1.
(a) Displacement of masses 1 and 2.
(b)  Relative displacement between the two masses, at low and 

high damping values for the resonance at 160 Hz.
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Time domain simulations that clearly show the difference in displacement between the system 
with low damping (blue) and high damping (red).

Increasing the natural frequency basically solves the same 
problem as increasing the damping, is usually much 
simpler to implement and does not require additional 
calculational tooling and components such as dampers. 
Therefore, this order of engineering actions makes perfect 
sense. In Equation 1, the amplitude of a damped oscillation 
is shown as a function of time, where Ai is the initial 
vibration amplitude of the oscillation, ζi is the modal 
damping, ωi is the natural frequency and φi is the phase 
shift of the oscillation.

 xi(t) = Aie
–ζiωit · sin(ωi t + φi )   (1)

The first part (Aie
–ζiωit) describes the envelope of the 

sinusoidal oscillation over time. The expression in the 
exponent (ζiωit) describes the rate of the amplitude decay 
as a function of time. This so-called exponential decay rate 
is influenced by the damping ratio ζi to dissipate energy in 
an oscillating system and equally by the natural frequency 
ωi. By two times faster oscillations, settling time is 
shortened in the same way as by a twofold increase of the 
relative damping. This explains the need for high natural 
frequencies in a mechanical design. In addition, this high 
natural frequency helps to reduce the initial setpoint-
induced vibration amplitude [3].

The second point is a more practical point and concerns 
the fact that damping is usually created by designing 
a damping device that makes use of a linear viscoelastic 
(LVE) material; see the text box. A specific group within 
the LVE materials are the rubbers, which are usually 
applied for damping applications around room 
temperature. In general (exceptions are possible), rubbers 
tend to show increasing damping values at higher 

frequencies, typically in the frequency range (100 Hz 
to a few kHz) that mechanical engineers are dealing with.  
This implies that the application of a rubber becomes  
more effective once a sound mechanical design has been 
created with high natural frequencies. To summarise: 
although there is new paradigm of designing for damping 
to improve performance, first the old paradigm of 
designing for high natural frequencies has to be pursued.

Linear viscoelastic materials

Linear viscoelastic materials (LVE) show linear frequency-
dependent damping. The damping is typically low for 
low frequencies and increases by orders of magnitude 
with increasing frequency. Beyond a certain frequency – 
depending on the material – the damping drops and 
ultimately vanishes. Control engineers typically deal with 
these characteristics every day when designing a lead filter, 
which shows the same characteristics as an LVE material.

Although this feels as if it is ‘nonlinear’ material behaviour, 
it is not. This characteristic behaviour can be approximated 
with linear equations – mimicking a combination of springs 
and dampers (Maxwell model) – and, therefore, is linear 
system behaviour. Control engineers are familiar with this: 
a simple lead filter is a component from linear control theory.

Optimisation of damping
Increasing the damping of a mechanical structure in the 
field of precision engineering typically implies the design 
of additional, artificial damping mechanisms that increase 
the damping at the resonance frequencies; see the text box 
on the next page. These devices, such as tuned mass 
dampers (TMDs) and constrained layer dampers (CLDs), 
are well known and have been extensively described in 
literature [4,5], with many different variations on these 
topics. Analytical solutions exist for relatively simple 
problems, such as finding the optimal damping for a 
specific resonance frequency. For more complex problems, 
such as optimising the damping over a range of resonances, 
or optimising for other criteria (i.e. control bandwidth) 
including the behaviour of dampers, optimisation 
algorithms can help solving these questions [2].

Damper placement
An important question for engineers who want to apply 
damping to a structure, which has not been discussed 
extensively in literature yet, is where dampers should 
be placed to maximise performance. This depends on 
the type of damper, and for the remainder of this article 
we will dive into the placement of TMDs. 
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Analogy between design for high stiffness and optimal TMD placement.
(a)  Effective stiffness with a transmission ratio of 1.
(b)  Transmission ratio of 2, defined as output displacement x(t) over spring displacement, leading to a four times lower stiffness at the output.
(c)  TMD acting on a mass-spring-damper via a transmission ratio of 1.
(d)  TMD acting on a system with a transmission ratio of 2, leading to an effectiveness increase for the TMD.
(e)  Transmission ratio of 1/5, leading to a very ineffective lever ratio, hence the TMD is 25 times less effective as compared to the case with a ratio of 1.

4e

To be effective, dampers in general need velocity difference 
across them. TMDs need input displacement and velocity, 
so these add-on devices should be placed at locations 
where the displacement is maximal for the mode shape 
that needs to be damped, which implies that a certain 
understanding must be gained of the mode shapes present 
in the system at hand and how they manifest themselves 
in a dynamic system.

A TMD can be seen as an intrinsic local ‘control loop’, 
picking up the displacement and velocity at its mounting 
position and, in response to this, applying a reaction force 
back to the main structure. This description of a TMD is 
the mechanical equivalent of a local motion-control loop. 
Studying the optimal location for a TMD creates under-
standing about capabilities for dealing with resonances 
similar as in a feedback control loop. This is referred to 
as the observability and controllability properties 
of a structure [7].

In addition, the principles of damper placement are quite 
comparable to the rules we apply to design for high stiffness. 
Figure 4 shows the effect of a transmission ratio on 
the stiffness c that is felt at the output at point A, where 
force F(t) is applied. In the case of Figure 4a, this is simply 
the stiffness c [8]. In Figure 4b, a transmission ratio of 2 

Damping devices  
for improving performance

Different methods of increasing damping exist, with 
the simplest option being to increase material damping.  
However, this is often hard to realise because structural 
materials are usually selected for other mechanical 
properties, and high stiffness usually implies low damping, 
unless composite materials are applied [6].  
The alternative is to add a damping device:
•  A tuned mass damper (TMD) device is specifically tuned 

to damp a certain natural frequency. It is very effective, 
but sensitive to parameter variations. 

•  A constrained layer damper (CLD) uses the deformation 
(strain) of a certain surface to add damping. It consists of a 
rubber (constrained) layer and a metal (constraining) layer, 
which is designed such that shear deformation is passed 
on to the rubber layer, which increases the damping.

•  A robust mass damper (RMD) looks like a TMD from the 
outside, but uses a much higher damping value. The result 
is that it increases the damping at many resonances. Its 
disadvantage is the complex mathematics or models that 
need to be studied; simple analytical equations do not 
exist for these devices.
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First flexible mode of a 450-mm wafer chuck (mass about 23 kg). The natural frequency, 
calculated using finite-element analysis, is approximately 1530 Hz.  
This mode, called the torsion mode, mainly shows displacement in vertical direction.

a 25 times mass increase is required for the TMD to obtain 
the same effectiveness. Between Figure 4d and Figure 4e 
the efficiency difference is even a factor of 100. When 
the TMD is moved even further towards the pivot point, 
its effectiveness on the main system decreases to zero. Here, 
the modal mass that is felt by the TMD goes to infinite.

An ‘inverse way’ of thinking about the system is to look at 
it from the TMD side: the effectiveness of a TMD changes 
as a function of its location (the transmission ratio). This 
implies that the main mass that is felt by the TMD (called 
modal mass) changes with the position of the TMD. This is 
exactly what happened in Figure 4 when the transmission 
ratio changed; it affects the apparent modal mass of the 
main system as felt by the TMD. This observation is key 
to understanding mode shapes and the way they interact 
with other components in the system.

Mode-shape representation
Usually, the mode shapes of precision designs are more 
complex than the versions in Figure 4 and show complex 
dynamics of multiple components in different directions. 
Nevertheless, one particular mode can be modelled as 
a single mass-spring-damper system in order to study the 
effectiveness of a TMD implementation. In this case, 
the transmission ratio is not visible as shown in Figure 4, but is 
present in the form of the mode shape. An example of a more 
complex mode is shown in Figure 5, which is the first flexible 
mode (torsion mode) of a cordierite 450-mm wafer stage. 

A simplification of this is presented in Figure 6, which 
shows the torsion mode for a flat plate. The natural 
frequency is different, but the same principles for damper 
placement apply. The goal is to increase the modal 
damping of this mode. The effect of different TMD 
locations is shown in Figure 6. Figures 6a, 6b and 6c show 
the effect of damper placing at the preferred location for 
this mode shape, where modal displacement is maximal. 
At this plate corner, the modal factor (or transmission 
ratio) is 2.11. This leads to a relatively high transmission 
ratio (Figure 6b), which is fundamentally equivalent to 
applying the TMD to a small main mass (modal mass). 
The modal mass m in this case is 0.225 kg.

In Figure 6d, the TMD has been moved towards the centre 
of the plate. The displacement is approximately 2.8 times 
less, giving a modal factor of 0.75 and leading to a much less 
effective transmission ratio, as shown in Figure 6e. This is 
essentially the same as applying the TMD to an eight times 
higher modal mass, visualised schematically in Figure 6f. 
This example shows that damper placement is key to 
effective suppression of vibration amplitude at a particular 
resonance frequency with corresponding mode shape, 
thereby increasing the modal damping of a structure.

is applied, meaning that the displacement x(t) at point A 
equals two times the elongation of the spring attached 
at point B. This results in a total transmission ratio of 4 
(defined as output divided by input), since both the force 
on the spring and the displacement at the output scale 
with the transmission ratio, which leads to doubling 
the elongation of the spring and a fourfold increase 
of the displacement at the output.

Transmission ratio impact
So, in general, the effective stiffness scales with the trans-
mission ratio squared. This principle is well known to 
mechanical engineers, and an equivalent principle applies 
for damper placement on a mechanical system. This 
is shown in Figures 4c to 4e. 

Figure 4c shows a lumped-mass-spring-damper system 
with one translational mode shape. The undamped natural 
frequency is determined by the spring and the mass, and a 
TMD is inserted to add damping to this mode. As a rule of 
thumb and supported by practical cases, 10% of the main 
mass m can be used as an educated guess for mtmd to design 
an effective damper based on tuning rules according to [4]. 

Figure 4d shows the same same TMD mass attached to 
the main mass, but now via a transmission ratio equal to 2. 
The displacement x(t), fed into the damper, equals the 
displacement of mass m multiplied with the transmission 
ratio. The force produced by the damper is also multiplied 
by the transmission ratio before it acts on mass m. 
Effectively, the TMD mass now feels only a fraction of 
the main mass m. This implies that the transmission ratio 
squared is also present in this case, leading to the 
conclusion that the TMD mass of Figure 4d can be 25% 
of that in Figure 4c with exactly the same effectiveness 
on a system level. 

Likewise, the effectiveness of the TMD in Figure 4e 
decreases by a factor of 25 with respect to Figure 4, hence 
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In pursuing optimal performance for a particular TMD 
mass, it is key to understand and to apply this approach 
correctly. A vibration mode can be damped at any location 
on the structure as long as there is modal displacement, 
but the effectiveness varies significantly. The induced 
change in damping will manifest itself in the total mode 
shape, regardless of the position where a measure of this 
mode is taken. Practically, this means that if a certain 
mode is damped at one corner, the other corner will 
experience the same amount of modal damping, because 
a mode (mode shape) is damped, not a node (a certain 
location on the structure). Consequently, a certain mode 
shape leading to high resonances in a control loop from 
actuator to sensor, can often can be damped more easily 
by a TMD at another location (not necessarily the location 
of the sensor), where the displacement of this mode is 
maximal. At this location the TMD-mass can be relatively 
small.

Conclusion
To summarise, the larger the modal factor (visualised as 
displacement in FEM results) the larger the transmission 
ratio (modal factor) and the lower the TMD mass required 
to be sufficiently effective. This implies that a TMD needs 
to be located at a position where the displacement – and 
thereby the velocity – is maximum for a certain mode 
shape. Intuitively, this feels right for engineers. The 
opposite way of thinking is usually a bit more 
counterintuitive: the larger the displacement at the TMD 
mounting location, the smaller the modal mass of the 
main system is. It is apparent, based on the example 
above, that the knowledge to understand modes in a broad 
sense is the key to an effective design for damping. 
Understanding this makes life relatively simple, because 
all mode shapes can be transformed into single-DoF 
(degree of freedom) dynamic systems, from which damper 
effectiveness can be calculated relatively simply.

6a 6d

TMD placement on a structure. The upper figures (a and d) show the application of a TMD on a plate in two different positions.  
The middle figures (b and e) show the transmission ratio induced by the mode shape. The lower figures (c and f ) show the representative 
dynamic model. Note the difference in effective mass in the lower two figures.
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This article has made an attempt to connect to the 
understanding of mechanical engineers and extend it 
towards thinking in terms of dynamics and mode shapes 
and attenuating vibration amplitudes through passive 
damping. To that end, the analogies in terms of trans-
mission ratios and their effect on system performance 
have been used: the same quadratic equation for trans-
mission ratios holds for stiffness and mass. In general, 
understanding this matter gives clear insight into not only 
where to place the dampers, but also in a broader sense 
into how a control system ‘feels’ the different vibration 
modes.
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